首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
田文文  李娜 《微电子学》2023,53(1):31-35
设计了一种基于平均电压反馈技术的片上高精度全集成张弛振荡器,所设计的振荡器克服了传统张弛振荡器对比较器延迟、器件老化和电流源噪声等敏感的问题。此外,还设计了一种一次性自动频率校正电路,可使振荡器在外部参考时钟的辅助下,自动完成输出频率的高精度校准。采用UMC 40 nm CMOS工艺,实现了50 MHz高精度全集成张弛振荡器,并完成了振荡器的版图和后仿真。振荡器的版图面积为181μm×218μm。后仿真结果表明,所设计振荡器能在不同工艺角下将输出频率自动校准到50 MHz,且在供电电压从2.2 V到3.6 V、温度从-40℃到125℃的变化下,输出频率误差仅为±0.47%。典型工艺角下,振荡器功耗为200μW。  相似文献   

2.
提出了一种基于频差自校准的高精度RC振荡器。通过对PTAT高频环形振荡器时钟计数,得到RC振荡器和参考时钟的计数偏差。数字自校准电路通过电阻阵列校准参考电压,减小计数偏差,进而得到稳定的振荡频率。参考时钟仅在工作前校准,实际工作中不需要额外的参考时钟。该RC振荡器采用CSMC 0.18 μm工艺,工作电压为1.8 V。仿真结果表明,该电路可以产生2 MHz的稳定振荡频率,整个系统的功耗为48.4 μW,启动时间小于15 μs。在-40~125 ℃温度范围内,振荡频率变化率小于±0.2%。在1.70~1.98 V供电电压范围内,振荡频率变化率小于±0.25%/V。  相似文献   

3.
张琦 《现代导航》2020,11(2):117-121
通过数字逻辑校准电路模块和电流镜阵列对环形振荡器的输入电流及充放电电流进行调整与控制,设计了一种频率为 2MHz 的高精度时钟产生电路,其具有时钟输出稳定性高、校准速度快,且电路结构简单的特点。采用 SMIC 0.18μm 工艺,在不同的工艺角及温度下对本电路进行了仿真,结果表明在以上各种仿真情况下时钟频率误差最大在±1%以内,且从开始校准到校准完成,最大所需时间不超过 400μs。  相似文献   

4.
基于SMIC 0.18μm CMOS工艺,设计了一种基于电容充放电的新型低功耗时钟发生器。为了减小温度变化引起的频率波动,设计了负温度系数偏置电路。采用了传统的占空比调节电路,可调节振荡波形的占空比。仿真结果显示,在3.3 V电源电压下,该振荡器可以稳定输出7.16 MHz频率的信号,相位噪声为-104.4 dBc/Hz,系统功耗为1.411 mW,其中环形振荡器功耗为0.811 mW。在-40℃~110℃温度变化范围内,振荡器的频率变化为7.116~7.191 MHz,容差在1.05%以内。同其他时钟发生器相比,该电路具有结构简单、功耗低,以及在宽温度范围内具有较高的频率稳定性等显著特点,能够满足芯片的工作要求,为芯片提供稳定时钟。  相似文献   

5.
在分析传统环形振荡器的基础上,提出了一种基于开关电容的高精度低温度系数环形振荡器。采用了带开关电容电路的频率负反馈架构,使得输出频率的精度与其温度系数仅取决于外部设定电阻与片上电容,通过合理选择外部设定电阻,即可实现高精度、低温漂的时钟输出。设计的高精度低温度系数的环形振荡器采用0.6 μm标准CMOS工艺设计。仿真结果显示,当输出频率为5 MHz时,输出频率误差≤1.74%,频率温度系数≤8.11×10-5/℃。  相似文献   

6.
作为系统时钟源,振荡电路的频率特性会影响芯片工作性能。为提高片内振荡器输出时钟的精度及稳定性,设计一种基于RC结构的振荡电路。该振荡电路采用带隙基准产生电容充电电流及基准电压,通过调整镜像管比例进行频率粗调校正,通过调整基准电压大小和温度系数以实现频率细调校正及温度特性校正。电路基于55 nm CMOS工艺设计实现,仿真结果表明,典型条件下电路工作输出为30 MHz,50%占空比时钟,在1.6~5.5 V、-40~125℃工作范围内,振荡频率偏移位0.6%以内,中心校准精度为0.5%,可作为片内高精度时钟源或参考时钟。  相似文献   

7.
《现代电子技术》2014,(9):148-153
设计了一种高性能Pierce晶体振荡器及频率校准电路。采用耗尽型NMOS管实现低功耗的1.5 V基准电压,晶体振荡电路采用基准电压供电,降低了振荡器的功耗同时提高输出频率的精度。为了进一步提高输出频率的精度,芯片内部集成熔丝修调电路,通过校正晶振负载电容,实现芯片封装后振荡电路输出频率的校准,校准范围为(-52.216 ppm,54.962 ppm),校准最大步长为3.723 ppm。增加数字方式校准电路,在具有温度检测功能的系统中,可以扩展实现计时的温度补偿功能,提高芯片的计时精度,校准范围为(-189.100 ppm,189.100 ppm),校准步长为3.050 ppm。电路在0.5μm-5 V CMOS工艺上实现。整个时钟芯片版图面积为0.842 mm×0.996 mm。  相似文献   

8.
在传统的电路基础上对电流、电压基准电路进行补偿,设计一种高精度数字可调CMOS片上振荡器电路.利用电阻和PNP管相反的温度系数产生的自偏置基准电流电路PTAT,NTAT两路电流,叠加得到一路与温度无关的基准电流上,实现了温度补偿;利用电阻网络补偿工艺产生高PSRR带隙基准电路电压的频率误差;数字修调寄存器粗调电流用以选择频率,微调电阻用以调节精度.经流片测试表明,该振荡器频率2 MHz,4 MHz可选,2 MHz可调精度达±0.1%;4 MHz可调精度达±0.125%.  相似文献   

9.
设计了一种采用0.18μm CMOS工艺制作的基于斩波拓扑的高精度RC振荡器。该结构对比较器失调有较好的抑制效果,并补偿了比较器传输延时对输出时钟频率的影响,达到了较好的温度特性。同时使用LDO对振荡器的主体电路供电,有效抑制了电源电压波动对输出频率的影响。另外该振荡器使用电容修调网络,减小了工艺漂移对中心频率的影响。仿真结果表明,所设计的振荡器在不同工艺角下均可以通过修调将频率校准至典型值2 MHz。在-40~125℃的温度范围内,输出频率的波动仅为0.87%。在3~6 V的电源电压范围,输出频率的波动仅为0.21%。与同类型的片上RC振荡器相比,该电路对温度、电源电压和工艺的漂移有更好的抑制作用。  相似文献   

10.
本文基于0.18μm CMOS工艺,设计了一款适用于片上系统SoC的无需晶振的片内12MHz时钟信号产生电路。利用高阶温度补偿方案,该时钟振荡器能在较宽的温度范围内实现振荡频率的高稳定性。此外,电路的稳压器设计使得振荡器频率在电源电压变化时也能保持相当好的稳定性。仿真结果表明,在-40℃~125℃温度范围内,此振荡器振荡频率的温度系数仅为40ppm/℃,电源电压变化±10%时,振荡频率的相对误差仅为±0.012%,完全能够满足常规数字系统的要求。  相似文献   

11.
采用反馈时钟进行频率检测,设计了一种应用于高频、低抖动频率综合器中的锁相环校准电路。相较于采用参考时钟计数的传统频率校准方法,该方法提高了频率校准精度。配合幅度校准电路交替进行压控振荡器幅度校准和频率校准,可以选取最优幅度和频率控制字,有效提高系统输出时钟抖动性能。高精度频率检测电路和幅度检测电路的电源电压为3.3 V,压控振荡器调谐频率范围为2.7~3.1 GHz,压控增益范围为10~15 MHz/V,初始频率和幅度控制字及最大输出幅度限制可配置。  相似文献   

12.
设计了一种应用于数字电源的新型温度自校准高精度片上振荡器。该振荡器利用片内集成的环形振荡器作为"温度传感器",环形振荡器的偏置电流设计成与热力学温度成正比,输出时钟信号频率对温度变化高度敏感,以此作为温度校准的参考信号,经过数字自校准算法产生控制RC振荡器充电电流大小的信号,校准RC振荡器输出时钟频率,从而完成片上实时温度自校准的功能。采用双比较器加SR触发器对称结构,降低比较器延迟误差。电路基于0.18μm BCD工艺模型,采用Cadence和Hspice进行仿真。仿真结果表明,在–55~+155℃温度范围内,振荡器输出中心频率为10.1 MHz,振荡器的频率随温度变化的偏移量在±0.6%以内。  相似文献   

13.
基于SMIC0.18gm 1P6M的标准CMOS工艺,设计并实现了一种带温度补偿和工艺偏差校准的60MHz片上CMOS时钟振荡器.经仿真和流片测试验证,该结构的时钟振荡器输出频率能很好的稳定在60-61MHz,温度从-25℃变化至75℃时,频率仅变化108.5kHz,在对时钟精度要求不高的应用下,完全可以取代片外的石英晶振,降低成本.  相似文献   

14.
律博 《电子器件》2024,47(1):31-35
在传统的RC振荡器结构基础上提出了一种片内集成的高精度振荡器电路,采用温度补偿电路对充电电流进行温度补偿。采用电容校准电路对输出频率进行校正。采用延迟消除电路减少比较器的延迟。最终达到振荡器高精度高稳定性的要求。基于CSMC的0.18μm BCD工艺,在电压4 V、温度27℃、TT条件下,输出频率为2 MHz,占空比为50%,通过频率校准,精度最终可达到±0.2%。该振荡器具有高精度、高稳定性、体积小、易于集成的特点,能够满足大多数片内集成芯片的需求。  相似文献   

15.
基于华虹0.18μm CMOS工艺,设计了一种无比较器的低温漂高精度RC振荡器。通过调整电流源的负温度系数电流补偿MOSFET阈值电压的温漂,保证输出频率在大温度范围内的高稳定性。通过提高电流源输出阻抗,提高振荡器的电压稳定性。采用数字修调技术矫正工艺偏差引起的频率误差。该振荡器由启动电路、CTAT电流源电路、电流镜电路、修调电路、竞争冒险消除电路和RC振荡电路六部分构成。因为没有采用比较器结构,所以在该振荡器中,不会出现由于比较器的传输延时与输入失调电压引起的非理想因素。采用Cadence进行电路仿真与验证,后仿真结果表明,该振荡器的典型频率为2 MHz,起振时间为5.1μs。在3~5 V电源电压变化范围内,频率偏差均在±0.55%以内;在-40~125℃温度范围内,输出频率随温度的变化率均在±1.2%以内,可适用于高精度的数模混合信号芯片。  相似文献   

16.
介绍了一款带有高阶温度补偿和数字修调功能的高精度片上RC振荡器。由于采用了2阶温度补偿方案,该时钟振荡器在较宽的温度范围内实现了振荡频率的高稳定性。由于采用电流数字修调技术,因此减小了工艺漂移对输出中心频率的影响。另外,应用误差放大器及共源共栅结构提高了电源抑制特性,从而使振荡器精度得到显著提高。电路基于SMIC 0.18 μm CMOS工艺设计。仿真结果显示,在温度范围为-40 ℃~125 ℃,电源电压波动为±10%,及不同的工艺角下,振荡器输出中心频率均为5 MHz,精度保持在±0.25%以内。同其他相似片上振荡器相比,在同样的温度变化、电压波动及工艺漂移的情况下,其频率稳定性显著提高。  相似文献   

17.
李文渊  李显  王志功 《半导体学报》2011,32(11):115003-6
采用SMIC 0.18mm RF CMOS工艺设计实现了一种低相位噪声的压控振荡器。该电路采用了优化设计的电感电容谐振腔,差分耦合的放大器作为负阻补偿谐振腔的能量损耗。为了拓宽电路的频率调谐范围,在电路中设计了三比特开关电容阵列。测试结果表明:振荡器频率调谐范围为1.92GHz 到3.35GHz,在2.4GHz 频率处偏移载波1MHz处的相位噪声为-117.8dBc/Hz。电路直流供电电压为1.8V,电流为5.6mA.,芯片尺寸为600mm′900mm。芯片性能良好,可以应用于IEEE802.11b标准的无线局域网接收机中。.  相似文献   

18.
设计了一个具有开关电容阵列和开关电感阵列的1.76~2.56GHz CMOS压控振荡器。电路采用0.18µm 1P6M CMOS工艺实现。经测试,压控振荡器的频率调谐范围为37%。在频率调谐范围内及1MHz频偏处,相位噪声变化范围为-118.5dBc/Hz至 -122.8dBc/Hz。在1.8V电源电压下,功耗约为14.4mW。基于具有电容阵列和电感阵列的可重构LC谐振回路,对压控振荡器的调谐范围参数进行了分析和推导,所得结果为电路设计提供了指导。  相似文献   

19.
一种低调谐增益变化的宽带电感电容压控振荡器   总被引:1,自引:1,他引:0  
袁路  唐长文  闵昊 《半导体学报》2008,29(5):1003-1009
设计了一个应用于数字电视调谐器的宽带电感电容压控振荡器.该振荡器包含了一个开关可变电容阵列,用以抑制调谐增益的变化.整个电路采用0.18μm CMOS工艺实现.测试结果表明:压控振荡器的频率范围从1.17GHz至2.03GHz(53.8%);调谐增益从69MHz/V变化至93MHz/V,其变化幅度与最大值相比为25.8%;最差相位噪声为-126dBc/Hz@1MHz;在1.5V电源电压下,压控振荡器的功耗约为9mW.  相似文献   

20.
设计了一个应用于数字电视调谐器的宽带电感电容压控振荡器.该振荡器包含了一个开关可变电容阵列,用以抑制调谐增益的变化.整个电路采用0.18μm CMOS工艺实现.测试结果表明:压控振荡器的频率范围从1.17GHz至2.03GHz(53.8%);调谐增益从69MHz/V变化至93MHz/V,其变化幅度与最大值相比为25.8%;最差相位噪声为-126dBc/Hz@1MHz;在1.5V电源电压下,压控振荡器的功耗约为9mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号