首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
将HLB值分别为17.5、15.6和11.7的疏水改性聚醚作为侧链引入到以丙烯酸(AA)为主链的聚合物中,合成了重均相对分子质量25000~30000的3种聚合物SR-PCA1、SR-PCA2、SR-PCA3。探索了侧链HLB值对干燥收缩及分散性能的影响规律,开发了SR-PCA2减缩型聚羧酸。掺量为胶凝材料总质量的0.4%时,减水率达20%,28d混凝土干燥收缩减少25.7%,有效解决了吸附分散与低表面张力间的矛盾,在低掺量下实现了减缩、分散与分散保持性能的协调统一。同时,研究了侧链HLB值-孔溶液表面张力-孔溶液K+、Na+浓度-吸附行为间的关系,揭示了减缩型聚羧酸的作用机理。  相似文献   

2.
高南箫  刘加平  冉千平  田倩  张建纲 《功能材料》2012,43(14):1931-1935
低分子聚醚减缩剂是目前市场上应用最为广泛的一类减缩剂,但其减缩机理尚不明确。选用两亲性二乙二醇单丁醚作为减缩剂,与其分子结构不同但同为两亲性的二丙二醇作为对比样,探索两亲性低分子聚醚减缩机理。通过收缩性能实验表明,二乙二醇单丁醚减少干燥收缩与自收缩的能力明显优于二丙二醇,掺量为2%时,二乙二醇单丁醚与二丙二醇分别减少干燥收缩44.4%与19.2%,减少自收缩73.1%与23.8%。通过等离子光谱(ICP)、有机碳分析仪(TOC)探索了二丙二醇及二乙二醇单丁醚对水泥浆体孔溶液性能的影响,结果表明,减缩能力与减缩剂的分子结构密切相关。水泥水化基本完全后,两亲性二丙二醇与二乙二醇单丁醚不同程度地进入到水泥浆体孔溶液中,28d龄期时使孔溶液中K+含量分别降低13.8%和35.4%,Na+含量分别降低15.6%和39.6%,而孔溶液的表面张力也分别降低9.2%与46.2%。由此可见,两亲性减缩剂的减缩能力与其孔溶液中K+、Na+浓度成反比且会不同程度地降低孔溶液的表面张力,从而表现出不同的减缩能力。  相似文献   

3.
减缩剂的作用及其机理   总被引:3,自引:1,他引:2  
钱春香  耿飞  李丽 《功能材料》2006,37(2):287-291
通过对减缩剂作用和机理的研究表明,减缩剂能较大幅度的降低干燥收缩和相对较小的提高塑性收缩抗裂能力,但在一定程度上降低了砂浆的力学性能.从塑性抗拉强度、表面水份蒸发率和孔结构三个角度对减缩剂的作用机理进行了试验分析,结果表明:减缩剂的加入能较显著的降低水溶液的表面张力,同时也降低了砂浆表面的塑性抗拉强度,增大了表面水份蒸发率,它对塑性收缩抗裂的效果取决于对塑性抗拉强度和毛细管收缩应力影响的权重;表面张力试验表明,减缩剂减小干缩的机理主要在于降低了孔溶液的表面张力;从对孔结构的分析表明,减缩剂掺入后增大了孔隙率,并增加了孔径>0.1μm的孔的含量,从而降低了掺减缩剂的砂浆力学性能.  相似文献   

4.
现有聚羧酸减水剂不能满足低水胶比、硅灰掺量高的胶凝材料体系的流动性及粘度调节需求。本研究采用分子设计的方法,以过硫酸铵(APS)为引发剂,丙烯酸(AA)、马来酸酐(MAH)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)、乙烯基三乙氧基硅烷(VTEO)、烯丙醇聚氧乙烯醚(APEG)为单体,通过自由基共聚合成了分子量小、主链含硅羟基、羧基密度高的降粘性聚羧酸减水剂(S-PCEs)。通过傅里叶红外光谱仪(FTIR)、凝胶渗透色谱(GPC)对S-PCEs的结构进行了表征,比较了其与市售聚羧酸基减水剂(C-PCEs)的表面张力、Zeta电位、吸附行为等理化性质差异及对低水胶比水泥-硅灰浆体流动性、流变及触变性能的影响差异。最后,探究了S-PCEs的作用机理。研究结果表明:S-PCEs在低水胶比水泥-硅灰体系中具有良好的分散性,当其折固掺量为2%时,低水胶比(w/b=0. 18)水泥-硅灰浆体的初始流动度及60 min时的流动度较掺C-PCEs的浆体分别提高了22. 37%和20. 83%,且随着水胶比的降低或硅灰掺量的提高,S-PCEs对胶凝材料的分散优势更加明显。相比于C-PCEs,S-PCEs的掺入使低水胶比水泥-硅灰体系的屈服应力下降7. 95%,等效塑性粘度降低61. 31%,触变环的面积减少52. 98%。一方面,S-PCEs在低水胶比水泥-硅灰体系中有更大的吸附量,单位面积的胶凝材料组分表面吸附的分子个数更多,因此对絮凝结构的分散效果更好;另一方面,加入S-PCEs后液相表面张力显著降低,胶凝材料颗粒表面的结合水含量减少。因此,掺S-PCEs的体系中存在更多的自由水,S-PCEs使低水胶比水泥-硅灰浆体的流动性提高,粘度降低。  相似文献   

5.
刘玲  衣军勇  肖刚  方伟  崔景亮  田洪雷  赵曰琦 《材料导报》2021,35(z2):158-162,193
为揭示聚羧酸减水剂对砂石含泥量敏感机理,本实验研究了聚羧酸减水剂在蒙脱土上的吸附行为.采用紫外分光光度法,系统研究了聚羧酸减水剂溶液浓度、吸附时间和温度对蒙脱土吸附聚羧酸减水剂的过程及其吸附量的影响;利用Fourier红外光谱,表征分析了聚羧酸减水剂嵌入蒙脱土内部微观结构变化.结果表明:聚羧酸减水剂溶液浓度对蒙脱土层间吸附量影响较小;一定浓度的聚羧酸减水剂在蒙脱土表面的吸附量随吸附时间变化具有饱和吸附性;吸附时间小于90 min时,随时间延长,层间吸附量增大变化明显;吸附温度升高,聚羧酸减水剂在蒙脱土上的表面吸附和层间吸附量均增大;吸附聚羧酸减水剂后的蒙脱土,具有明显的减水剂特征吸收峰,聚羧酸减水剂嵌入了蒙脱土内部.聚羧酸减水剂在蒙脱土上的吸附为表面吸附和嵌入吸附.降低聚羧酸减水剂溶液浓度、缩短吸附时间、降低吸附温度,有利于减少聚羧酸减水剂在蒙脱土表面上的吸附;缩短吸附时间和降低吸附温度,可有效减少聚羧酸减水剂嵌入蒙脱土的驱动力,降低嵌入吸附量;最终达到提高聚羧酸减水剂对砂石含泥量适应性的目的.  相似文献   

6.
本研究主要对比了减缩剂和高性能混凝土膨胀剂(HCSA)单掺以及复掺时,对超高性能混凝土(UHPC)强度、收缩性能的影响.结果显示,减缩剂会延缓水泥水化,延长水泥凝结时间,不利于UHPC早期强度的发展.随着减缩剂掺量(0%~2%,质量分数)增加,UHPC的自收缩降低,当减缩剂掺量为0.5%时可有效降低UHPC的干燥收缩.而HCSA膨胀剂缩短UHPC的凝结时间,早期强度的发展快;HCSA膨胀剂具有降低UHPC内部有害孔数量、减小总孔隙率的作用,能够降低UHPC的自收缩和干燥收缩;但HCSA膨胀剂过量时,无法获得足够的水分参与反应,且有破坏UHPC结构的风险.减缩剂和HCSA膨胀剂复掺时,UHPC的抗压、抗折强度均大于单掺减缩剂时的强度,且小于单掺HCSA膨胀剂时的强度.2%减缩剂和10%HCSA膨胀剂复掺对UHPC收缩的抑制作用最好,同时UHPC具有较高的力学性能.  相似文献   

7.
为了研究聚羧酸系减水剂(PCA)分子结构中疏水侧链对新拌混凝土坍落度及其损失的影响,以马来酸酐(MA)、异戊烯醇聚氧乙烯醚(TPEG)和丙烯酸烷基酯为原料,过硫酸铵为引发剂,通过自由基聚合合成了4种不同疏水侧链长度(疏水侧链含碳个数分别为4、8、12和18)的聚羧酸系减水剂。通过水泥净浆流动度、流动性损失等指标检验了聚羧酸系减水剂的分散性能及保坍性能,结果表明随着疏水侧链长度的增加,聚羧酸系减水剂的分散性能逐渐提高,保坍性能有所改善。吸附量和zeta电位测试结果解释了这种现象的原因,随着疏水侧链长度的增加,水泥颗粒表面zeta电位绝对值逐渐增加,水泥颗粒表面上的持续吸附能力逐渐增强。  相似文献   

8.
地聚合物混凝土制品的体积收缩严重,影响其在建筑工程中的推广应用。为提高体积安定性,在粉煤灰-矿渣地聚合物混凝土中掺入吸水性较强的稻壳灰颗粒,研究稻壳灰对混凝土强度发展和收缩行为的影响。采用BET氮吸附法和扫描电子显微镜(SEM)表征硬化体的微观结构。结果表明,稻壳灰在地聚合物中的反应活性较高,可有效加速碱激发反应进程,提高地聚合物混凝土的抗压强度,同时可有效改善自收缩和干燥收缩。掺入30%稻壳灰的混凝土的自收缩和干燥收缩分别为56.2μm/m和447.9μm/m,相较于未掺稻壳灰的试样,自收缩和干燥收缩减缩率分别为62.4%和48.0%。干燥的稻壳灰颗粒可吸附液体碱激发剂中的水分,有助于保持基体内的相对湿度。此外,掺入稻壳灰还有助于硬化体结构的致密化,降低毛细孔所占比重,抑制裂纹扩展。  相似文献   

9.
高礼雄  孔丽娟 《功能材料》2013,44(10):1399-1403
为降低机制砂混凝土的开裂敏感性,提高其应用技术水平,通过测试机制砂混凝土的干燥收缩值,并结合相应砂浆保水性和扫描电镜(SEM)微观形貌分析,研究了不同使用方式的减缩剂对石粉(SD)含量不同的机制砂混凝土干燥收缩的影响。结果表明,对于减缩剂使用方式不同的相同混凝土试件,内掺(SRA-M)和外涂(SRA-C)都降低了试件的干燥收缩,但对于不同的试件其降低幅度不同;对于减缩剂使用方式相同的不同混凝土试件,SRA-M更有利于降低石粉含量为5%的机制砂混凝土试件(5-SD)干燥收缩,而降低石粉含量为10%的机制砂混凝土试件(10-SD)干燥收缩更有效的减缩剂使用方式是SRA-C;减缩剂通过阻滞试件内部自由水分迁移渗出,提高其保水性,从而降低干燥收缩值。  相似文献   

10.
硅灰是超高强混凝土(UHSC)中最难被分散的组分,超高强混凝土性能提升需要硅灰的有效分散.通过自由基反应,将乙烯基三乙氧基硅烷接枝引入了主链结构中,合成了一种含有硅烷基团的聚羧酸减水剂(PCES).采用微坍落度法研究了 PCES 对水泥-硅灰浆体流动性的影响规律.用有机碳分析仪研究了PCES在水泥净浆和硅灰表面的吸附性能.研究结果表明,聚羧酸减水剂分子结构中引入硅烷基团后,分散水泥-硅灰浆体的能力明显提高,在水泥颗粒表面吸附量增加幅度不大,而在硅灰表面的吸附量有较大幅度增加.PCES能够在含有羟基的硅灰表面同时发生物理吸附和化学吸附,硅灰表面吸附更多的减水剂分子后,其空间排斥能增加,这可能是PCES分散能力提升一个机理.相较普通聚羧酸减水剂,硅烷改性的聚羧酸减水剂更适宜配制超高强混凝土.  相似文献   

11.
石墨烯用于水泥基材料不仅可以起到增强增韧作用,还可以提高水泥基体的自感应能力,石墨烯的均匀分散是其在水泥基体中应用的瓶颈问题。在本研究中,笔者合成了4种电荷密度和侧链长度不同的聚羧酸类减水剂(PCEs)。利用紫外分光光谱仪、动态光散射仪、超景深光学显微镜等方法研究了不同结构PCEs对石墨烯分别在去离子水体系和水泥孔溶液体系中分散性的影响,并提出了石墨烯的分散机理。结果表明,在去离子水体系中,高电荷密度的PCE具有更高的静电排斥力,更有利于石墨烯的分散;而具有较低电荷密度和较长侧链的PCE降低了石墨烯的分散性。相反,在水泥孔溶液体系中,对于高电荷密度PCE,由于聚羧酸基团与Ca~(2+)的桥接效应,降低了PCE间库仑力的排斥作用,从而降低了石墨烯的分散性;对于低电荷密度的PCE,由于聚羧酸基团与Ca~(2+)的桥接效应不显著,空间位阻发挥主要作用,石墨烯分散性较好。此外,具有较长侧链的PCE在两种体系中均表现出较差的分散效率。总体来说,具有低电荷密度和较短侧链的PCE更适合于制备石墨烯水泥复合材料。  相似文献   

12.
调节异戊烯醇聚氧乙烯醚(TPEG)的聚合度及与丙烯酸(AA)的摩尔比,以过硫酸铵(APS)为引发剂、甲基丙烯磺酸钠(MAS)为链转移剂,通过水溶液自由聚合法合成了长侧链聚羧酸(LPCE)、长短侧链聚羧酸(LSPCEs)和短侧链聚羧酸(SPCE)3类梳型聚羧酸减水剂(PCEs)。研究了长短侧链比例对水泥早期水化行为的影响,进一步通过PCEs水溶液聚集形态、吸附性能和引气性能等探讨了长短侧链比例对水泥水化行为影响的作用机理。结果表明,SPCE有利于延缓水泥的早期水化,使水化诱导期延长,这是由于SPCE较LSPCEs和LPCE,在水泥颗粒表面的吸附量更大、吸附层厚度更高所致。加入水泥后,随着短侧链比例的增大,PCEs水溶液的起泡高度有增加趋势,而LPCE水溶液的黏度较大,稳泡性能较LSPCEs和SPCE好。  相似文献   

13.
姜骞  于诚  袁森森  冉千平 《材料导报》2021,35(20):20022-20027
分别采用两种超长侧链聚羧酸减水剂与一种常规聚羧酸减水剂制备低坍落度混凝土,通过测试分析湿筛砂浆流动度、流变性、气泡结构参数以及三维重构气泡形态,对比研究了超长侧链聚羧酸减水剂对混凝土工作性能与气泡特征经时变化的影响.结果表明:低坍落度混凝土湿筛砂浆符合宾汉姆流体特征,流动度与屈服应力具有强线性相关性,减水剂种类对其影响较小,但超长侧链聚羧酸对砂浆流动度的经时保持作用明显弱于普通聚羧酸.超长侧链聚羧酸在砂浆中的引气数量和小孔径气泡占比均低于普通聚羧酸,并且超长侧链聚羧酸加速了砂浆中小孔径气泡向大孔径气泡的转变.CT三维重构试验直观地证实了砂浆中相邻小气泡聚并成大气泡现象的存在,超长侧链聚羧酸使得砂浆中气泡聚并发生的时间比普通聚羧酸更早.  相似文献   

14.
梳状结构聚羧酸具有优异的分子结构可设计性,为绿色混凝土的生态化、高性能化提供了理论基础和技术支撑。本研究以聚丙烯酸(PAA)、羟基甲氧基聚氧乙烯丙烯醚(HMPEPG)、氨基甲氧基聚氧乙烯丙烯醚(AMPEPG)为反应原料,根据酯化和酰胺化反应,分别设计合成了以酯基和酰胺键接主侧链的梳状结构聚羧酸(PCE),并通过红外光谱(IR)和分子量测试证明了分子结构符合预期设计。水泥净浆和混凝土应用性能结果表明,酯基键接聚羧酸的初始净浆流动度和混凝土早期强度更优,酰胺键接聚羧酸的净浆流动度保持能力和混凝土扩展度更优。二者的作用机理存在显著差异,酯基键接聚羧酸的吸附行为更稳定,更易快速成核水化,酰胺键接聚羧酸的表面张力更低,气-液界面取向能力更强。本研究合成的酯键和酰胺键两种方式连接主侧链的梳状结构聚羧酸可分别应用于高早强要求和高泵送要求的混凝土,具有较好的应用前景和推广价值。  相似文献   

15.
聚羧酸减水剂(PCE)因具有掺量低、减水率高、分散性能优异、功能可设计性强、制备过程绿色环保等优点在建设工程领域应用广泛。但是PCE与粘土矿物相互作用,尤其是蒙脱土(MMT)对PCE的有害吸附,使PCE的分散效果显著降低甚至完全丧失。为克服粘土对聚羧酸减水剂的负效应,从聚羧酸减水剂结构性能及其与粘土的作用机理入手,综述了近年来PCE的粘土耐受性研究进展和抑制粘土负效应的策略。通过粘土抑制剂复配、分子结构设计等手段提高PCE对粘土的适应性,为解决聚羧酸减水剂分散性能受制于粘土的技术难题提供基本思路。  相似文献   

16.
以氯化亚砜和甲氧基聚乙二醇(MPEG)为原料合成氯代甲氧基聚乙二醇(Cl-MPEG),对乙醇胺表面的氨基进行聚乙二醇(PEG)长链接枝,通过丙烯酰氯进一步引入双键合成二臂超支化聚氧乙烯醚大单体(TAHBPE)。将TAHBPE与丙烯酸小单体采用水溶液自由基共聚法合成二臂侧链超支化型聚羧酸减水剂(TAHB-PCEs)。采用红外光谱、核磁共振、质谱、凝胶渗透色谱对合成过程的中间和最终产物进行了结构表征。结果表明,成功合成了Cl-MPEG,TAHBPE和TAHB-PCEs。净浆流动度和流变性测试结果表明,TAHB-PCEs的净浆流动度达到298.5 mm,屈服应力和黏度均小于传统梳型聚羧酸减水剂。通过表面张力、接触角对TAHB-PCEs的分散作用机理进行了探讨,保持聚羧酸减水剂的羧酸根密度不变、缩短侧链长度、增大侧链密度可降低其表面张力和表面能,有利于其在水泥表面的润湿,达到更好的减水分散性能。  相似文献   

17.
采用硅氢加成法,在反应温度为85℃~90℃,反应时间为3.5 h~4.0 h,催化剂含量为反应物总量0.005%~0.01%且无溶剂的条件下,同时将亲水基团烯丙基聚氧乙烯聚氧丙烯醚、疏水基团含氟单体或长链烷基酯分别引入到202低含氢硅油的侧链,成功制得两种高疏水基水性聚合物。采用红外光谱和透射电子显微镜对有关产物及其水分散物进行了结构分析,并系统研究了其水分散物的透光率、流变性、表面张力等性能,结果表明,两种含高疏水基水性聚合物都具有明显的降低表面张力效应,在质量分数为2%的产物的水分散物的表面张力降低至20 N/m~26 N/m,且具有剪切变稠现象。  相似文献   

18.
聚羧酸高性能减水剂与其它高效减水剂相比,有许多突出的性能:低掺量(0.2%--0.5%)而发挥高的分散性能;保坍性好,90分钟内坍落度基本无损失;在相同流动度下比较时,延缓凝结时间较少;与水泥适应性强、混凝土收缩小等特点。由于它的诸多优点,致使在现在工程质量要求比较严苛的客运专线混凝土工程中会经常使用到。本文简单叙述了聚羧酸减水剂使用的优缺点和在客运专线上使用过程的案例和问题的处理方法。  相似文献   

19.
聚羧酸系减水剂的构性关系及其作用机理研究   总被引:2,自引:0,他引:2  
聚羧酸系减水剂作为一种高性能减水剂,目前已成为国内外研究与发展的热点。概述了近几年国内外高效减水剂的研究与发展现状,阐述了聚羧酸系高效减水剂的分子结构、性能特点及作用机理,分子主链上阴离子基团越多及聚氧乙烯长侧链越长,聚羧酸系减水剂的分散性能和流动保持性能越好。聚羧酸系减水剂主要依靠聚氧乙烯长侧链的位阻效应和羧基及磺酸基的静电斥力来分散水泥颗粒。最后,提出了减水剂在应用中存在的问题并展望了其发展趋势。  相似文献   

20.
刘晓  赖光洪  许谦  管佳男  王子明  崔素萍  兰明章 《材料导报》2018,32(22):3880-3884, 3899
混凝土原材料附带的粘土具有劣化作用,给高性能混凝土的推广与应用带来了新的难题。本研究首次报道了基于粘土和聚羧酸分子尺寸计算自主设计合成的聚羧酸减水剂(PCE)对粘土负作用的改善效果,并结合吸附量、热重(TG)分析和X射线衍射(XRD)分析揭示了其对粘土负作用的抑制机理。计算结果表明,粘土层间吸附的不是整个PCE分子而是其功能性的聚醚侧链。因此针对性地合成了一种立体大尺寸分子结构的PCE,并由核磁氢谱(1H NMR)和凝胶渗透色谱(GPC)证明了预期结构的存在及其分子量特性。性能评价结果表明,该PCE可在含粘土条件下提高22.2%—35.7%的水泥净浆流动度,并且在高粘土掺量下对混凝土1 h坍落度也有明显改善。这归因于其大尺寸的立体结构能够产生显著的空间位阻效应,避免大分子上的聚醚侧链被全部吸入粘土层间,从而保障优良的减水分散功效,表现出抑制粘土负作用的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号