首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existing applications of electrical discharge machining (EDM) for bulk material removal are restricted by their comparatively low material removal rates. The bunched-electrode EDM proposed in this study, using the powerful multi-hole inner flushing, is an effective way of being released from this restriction. This paper investigates the mechanism by which flushing (flushing modes and flushing parameters) influences machining performance indices, i.e., material removal rate and tool wear rate, using experiments and simulations. Based on an investigation conducted, compared with traditional solid electrode with mono-hole inner flushing, a bunched electrode with multi-hole inner flushing endures higher peak current and results in larger material removal rate and higher relative tool wear ratio because of a more effective flushing process. By properly choosing inlet velocity and electrode effective-area ratio, a higher material removal rate is achieved and relative tool wear ratio is kept at a lower level.  相似文献   

2.
This paper deals with the effect of copper tool vibration with ultrasonic (US) frequency on the electrical discharge machining (EDM) characteristics of cemented tungsten carbide (WC-Co). It was found that ultrasonic vibration of the tool (USVT) was more effective in attaining a high material removal rate (MRR) when working under low discharge currents and low pulse times (finishing regimes). In general, the surface roughness and the tool wear ratio (TWR) were increased when ultrasonic vibration was employed. It was observed that application of ultrasonic vibration significantly reduced arcing and open circuit pulses, and the stability of the process had a remarkable improvement. This study showed that, there were optimum conditions for ultrasonic assisted machining of cemented tungsten carbide, although the conditions may vary by giving other input parameters for those which had been set constant in the present work.  相似文献   

3.
Lapping and electropolishing (EP) experiments for tungsten carbide blocks were executed. The effectiveness of the lapping experiment is evaluated in terms of the material removal rate, the surface roughness, and wear of the workpiece. The material removal rate describes the thickness removal of the workpiece under a fixed surface area. Wear describes a microscopic study of the wear track. The results show that the material removal and surface roughness increase as the grain size of the abrasive increases. Four main wear mechanisms -- abrasive wear, fracture, adhesive wear and scratch -- are observed during the lapping of tungsten carbide using silicon carbide abrasive. In the electropolishing experiment, four different machining characteristics -- sub-electropolishing, crack, electropolishing, and pitting -- can be analyzed as the applied current is increased. Although material removal is close to Faraday’s law during electropolishing, it disagrees with Faraday’s law after 400 s of sub-electropolishing.  相似文献   

4.
Micro-electrical discharge machining (micro-EDM) has become a widely accepted non-traditional material removal process for machining conductive and difficult-to-cut materials effectively and economically. Being a difficult-to-cut material, titanium alloy suffers poor machinability for most cutting processes, especially the drilling of micro-holes using traditional machining methods. Although EDM is suitable for machining titanium alloys, selection of machining parameters for higher machining rate and accuracy is a challenging task in machining micro-holes. In this study, an attempt has been made for simultaneous optimization of the process performances like, metal removal rate, tool wear rate and overcut based on Taguchi methodology. Thus, the optimal micro-EDM process parameter settings have been found out for a set of desired performances. The process parameters considered in the study were pulse-on time, frequency, voltage and current while tungsten carbide electrode was used as a tool. Verification experiments have been carried out and the results have been provided to illustrate the effectiveness of this approach.  相似文献   

5.
Electrical discharge machining (EDM) is a process for shaping hard metals and forming deep and complex shaped holes by arc erosion in all types of electro conductive materials. In the present work, the effectiveness of the EDM process with tungsten carbide and cobalt composites is evaluated in terms of the material removal rate and the surface finish quality of the workpiece produced. The objective of this research is to study the influence of operating parameters of EDM such as pulse current, pulse on time, electrode rotation and flushing pressure on material removal rate and surface roughness. The experimental results are used to develop the statistical models based on second order polynomial equations for the different process characteristics. The non-dominated sorting genetic algorithm (NSGA-II) has been used to optimize the processing conditions. A non-dominated solution set has been obtained and reported.  相似文献   

6.
Electrical discharge machining (EDM) is a process that can be used effectively to machine conductive metals regardless of their hardness. In the EDM process, material removal occurs because of the thermal energy of the plasma channel between the electrode and the workpiece. During EDM, the electrode as well as the workpiece is abraded by the thermal energy. Tool wear adversely affects the machining accuracy and increases tooling costs. Many previous studies have focused on mitigating the problems of tool wear by investigating various EDM parameters. In this study, the tool wear problem was investigated on the basis of the mobilities of electrons and ions in the plasma channel. The material removal volumes of both the electrode and the workpiece were compared as functions of the gap voltage. The material removal difference according to the capacitance was also investigated. The tool wear ratio was calculated under different EDM condition and an EDM conditions for reducing the tool wear ratio was suggested.  相似文献   

7.
Ti–6Al–4V is a kind of difficult-to-cut material with poor machinability by traditional machining methods, while electrical discharge machining (EDM) is suitable for machining titanium alloys. In this paper, three input machining parameters including pulse current, pulse on time and open circuit voltage were changed during EDM tests. To investigate the output characteristics; material removal rate (MRR), tool wear ratio (TWR) and different aspects of surface integrity for Ti–6Al–4V samples such as topography of machined surface, crack formation, white layer (recast layer) thickness and microhardness were considered as performance criteria. The variations of MRR and TWR versus input machining parameters were investigated by means of main and interaction effect plots and also verified by ANOVA results. The effect of pulse energy based on pulse on time and pulse current variations against recast layer thickness and microhardness was studied. The possibility of forming different chemical elements and compounds on the work surface after EDM process was investigated by EDS and XRD analyses. The experimental results revealed that general aspects of surface integrity for machined samples are mostly affected by pulse current and pulse on time. The approximate density of cracks, micro holes and pits on the work surface is intensively dependent on pulse energy variations. Although increase of pulse energy improves the material removal efficiency but leads to increase of average thickness and microhardness of recast layer.  相似文献   

8.
This study addresses micro-slit EDM machining feasibility using pure water as the dielectric fluid. Experimental results revealed that pure water could be used as a dielectric fluid and adopting negative polarity EDM machining could obtain high material removal rate (MRR), low electrode wear, small slit expansion, and little machined burr, compared to positive polarity machining. In comparing kerosene versus pure water, pure water was observed to cause low carbon adherence to the electrode surface. Also discharge energy does not decrease and the discharge processes are not interrupted. Therefore, MRR was higher, and related electrode wear ratio compared to kerosene use was lower. In a continual EDM with multi-slit machining, kerosene will cause carbon element adherence, creating an initially high MRR and electrode wear, with rapid decline. However, pure water will not cause carbon element adherence on the electrode surface, so MRR and electrode wear is always stable in this process.  相似文献   

9.
Present study investigates the influence of major operating parameters on the performance of micro-EDM drilling of cemented carbide (WC-10wt%Co) and identifies the ideal values for improved performance. The operating parameters studied were electrode polarity, gap voltage, resistance, peak current, pulse duration, pulse interval, duty ratio, electrode rotational speed and EDM speed. The performance of micro-EDM drilling process was evaluated by machining time, material removal rate (MRR), relative electrode wear ratio (RWR), spark gap, surface finish and dimensional accuracy of micro-holes. It has been found that there are two major conflicting issues in the micro-EDM of carbide. If the primary objective is to obtain better surface finish, it can be obtained by the sacrifice of high machining time, low MRR and high RWR. However, for faster micro-EDM, the surface roughness is higher and electrode wear is again much higher. It is concluded that negative electrode polarity, gap voltage of 120 V, resistance of 33 Ω, peak current of 8 A, pulse duration of 21 μs, pulse interval of 30 μs, duty cycle of 0.47, electrode rotational speed of 700 rpm and EDM speed of 10 μm/s can be considered as ideal parameters to provide improved performances during the micro-EDM of WC-Co.  相似文献   

10.
Machining fluid is a primary factor that affects the material removal rate, surface quality, and electrode wear of electrical discharge machining (EDM). Kerosene is the most commonly used working fluid in die sinking EDM, but it shows low ignition temperature and high volatility; if the improper operations are undertaken, it can cause conflagration. Using distilled water or pure water as the machining fluid in EDM, no fire hazard occurs, and the working environment is well; however, using distilled water or pure water as the machining fluid in EDM, the material removal rate of machining large surface is low, and the machine tool is easily eroded. Emulsion-1 and emulsion-2 used as working fluid in die sinking EDM are developed. The compositions of emulsion-1 and emulsion-2 are introduced. In comparison with kerosene, emulsion-1 and emulsion-2 used in EDM show high material removal rate, low surface roughness, high discharge gap, and good working environment. The electrode wear ratio in emulsion-1 is lower than that in kerosene. The electrode wear ratio in emulsion-2 is higher than that in kerosene. The effects of composition and concentration of emulsifier on the emulsion property and EDM performance have been investigated. The comparative tests of EDM performance with kerosene, emulsion-1, and emulsion-2 have been done.  相似文献   

11.
In this article, a material removal rate (MRR) and electrode wear ratio (EWR) study on the powder mixed electrical discharge machining (PMEDM) of cobalt-bonded tungsten carbide (WC-Co) has been carried out. This type of cemented tungsten carbide was widely used as moulding material of metal forming, forging, squeeze casting, and high pressure die casting. In the PMEDM process, the aluminum powder particle suspended in the dielectric fluid disperses and makes the discharging energy dispersion uniform; it displays multiple discharging effects within a single input pulse. This study was made only for the finishing stages and has been carried out taking into account the four processing parameters: discharge current, pulse on time, grain size, and concentration of aluminum powder particle for the machinability evaluation of MRR and EWR. The response surface methodology (RSM) has been used to plan and analyze the experiments. The experimental plan adopts the face-centered central composite design (CCD). This study highlights the development of mathematical models for investigating the influence of processing parameters on performance characteristics.  相似文献   

12.
李风  陈海燕  王大承 《中国机械工程》2005,16(17):1577-1581
分析、测量了不同加工条件下的材料去除率、相对电极损耗和电火花加工表面粗糙度,并研究了表面微裂纹和微硬度分布。实验结果表明,不同的材料具有类似的电火花加工性能,材料去除率随脉冲电流的增加而增加,峰值电流比脉冲宽度对表面粗糙度的影响更显著。研究结果对于选择合适参数进行电火花后处理具有重要意义。  相似文献   

13.
QT700-2电火花加工工艺试验特征规律研究   总被引:1,自引:0,他引:1  
综合应用单因素实验和正交实验对QT700-2进行电火花加工试验,在分析电火花加工QT700-2基础特征规律之上,考查了电规准对材料去除率、电极损耗等的影响规律。研究结果表明,采用紫铜电极负极性标准切入加工QT700-2时,在试验范围内,峰值电流对加工速度和电极损耗的影响最为显著;脉冲宽度在25~400μs范围内存在一个使加工速度最快的脉冲宽度ti;峰值电流虽然可以提高加工效率,但是会急剧加速电极损耗,在保证较低相对损耗比的同时提高加工效率,应首先考虑提高脉冲宽度。  相似文献   

14.
Electrical discharge machining (EDM) is an excellent method to machine tungsten carbide with high hardness and high toughness. However, debris from this material produced by EDM re-sticking on the workpiece surface remarkably affects working efficiency and dimension precision. Therefore, this study investigated the re-sticky phenomenon of tungsten carbide and how to reduce the debris re-sticking on the workpiece surface. In general, the polarity in EDM depended on the different electrical parameters of the machine input and the different materials of the tool electrode. The first item of investigation observed the re-sticky position of the debris to study the effect of different polarities during the EDM process. Next, the tool electrode was set at different conditions without rotation and with a 200 rpm rotational speed to evaluate the rotating effect in EDM. Finally, different lift distances of the electrode and different shapes of electrode with rotation were utilized to investigate the improvement for reducing debris re-sticking on the machining surface. The results showed that only negative polarity in EDM could cause the re-sticky phenomenon on tungsten carbide. On the other hand, debris would notably re-stick on any machining position when the tool electrode was not rotated in EDM. Besides, debris significantly stuck on the center of the working area with rotation of the electrode. Additionally, a larger lift distance of the tool electrode could reduce debris re-sticking on the working surface, but this process would decrease material removal rate in EDM. In the end, a special shaped design of the tool electrode resulted in the re-sticky debris completely vanishing, when the electrode width was 0.6 times the diameter of this cylindrical electrode.  相似文献   

15.
An experimental research study intended for the application of a planetary electrical discharge machining (EDM) process with copper-tungsten (Cu-W) electrodes in the surface micro-finishing of die helical thread cavities made with AISI H13 tool steel full-hardened at 53 HRC is presented. To establish the EDM parameters’ effect on various surface finishing aspects and metallurgical transformations, three tool electrode Cu-W compositions are selected, and operating parameters such as the open-circuit voltage (U 0), the discharge voltage (u e), the peak discharge current (î e), the pulse-on duration (t i), the duty factor (τ) and the dielectric flushing pressure (p in), are correlated. The researched machining characteristics are the material removal rate (MRR—V w), the relative tool wear ratio (TWR—?), the workpiece surface roughness (SR—Ra), the average white layer thickness (WLT—e wl) and the heat-affected zone (HAZ—Z ha). An empirical relation between the surface roughness (SR—Ra) and the energy per discharge (W e) has been determined. It is analysed that copper-tungsten electrodes with negative polarity are appropriate for planetary EDM die steel surface micro-finishing, allowing the attaining of good geometry accuracy and sharp details. For die steel precision EDM, the relative wear ratio optimum condition and minor surface roughness takes place at a gap voltage of 280 V, discharge current of 0.5–1.0 A, pulse-on duration of 0.8 μs, duty factor of 50%, dielectric flushing pressure of 40 kPa and copper tungsten (Cu20W80) as the tool electrode material with negative polarity. The copper-tungsten electrode’s low material removal rate and low tool-wear ratio allows the machining of EDM cavity surfaces with an accurate geometry and a “mirror-like” surface micro-finishing. A planetary EDM application to manufacture helical thread cavities in steel dies for polymer injection is presented. Conclusions are appointed for the planetary EDM of helical thread cavities with Cu-W electrodes validating the accomplishment as a novel technique for manufacturing processes.  相似文献   

16.
Electrical discharge machining (EDM) is developing as a new alternative method for slicing single crystal silicon carbide (SiC) ingots into thin wafers. Aiming to improve the performance of EDM slicing of SiC wafers, the fundamental characteristics of EDM of SiC single crystal were experimentally investigated in this paper and compared to those of steel. Furthermore, EDM cutting of SiC ingot by utilizing copper foil electrodes was proposed and its performance was investigated. It is found that the EDM characteristics of SiC are very different from those of steel. The EDM machining rate of SiC is higher and the tool wear ratio is lower compared to those of steel, despite SiC having a higher thermal conductivity and melting point. Thermal cracks caused by the thermal shock of electrical discharges and the Joule heating effect due to the higher electrical resistivity are considered to be the main reasons for the higher material removal rate of SiC. It is concluded that the new EDM cutting method utilizing a foil electrode instead of a wire electrode has potential for slicing SiC wafers in the future.  相似文献   

17.
Electric discharge machining (EDM) has achieved remarkable success in the manufacture of conductive ceramic materials for the modern metal industry. Mathematical models are proposed for the modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic which are developed using the response surface methodology (RSM) to explain the influences of four machining parameters (the discharge current, pulse on time, duty factor and open discharge voltage) on the performance characteristics of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The experiment plan adopts the centered central composite design (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). This study highlights the development of mathematical models for investigating the influences of machining parameters on performance characteristics and the proposed mathematical models in this study have proven to fit and predict values of performance characteristics close to those readings recorded experimentally with a 95% confidence interval. Results show that the main two significant factors on the value of the material removal rate (MRR) are the discharge current and the duty factor. The discharge current and the pulse on time also have statistical significance on both the value of the electrode wear ratio (EWR) and the surface roughness (SR).  相似文献   

18.

In order to reduce the electrode wear and increase the material removal, this paper proposed a kind of distributed-flushing ED milling. A rotating electrode with some distributed holes was used during the machining process. The distributed flushing developed the machining environment and increased the adhesion of debris on the electrode, thus decreasing the electrode wear rate. Compared with the material removal rate of conventional ED milling, the relative electrode wear ratio decreased by 10.7 %. Furthermore, the material removal rate of the new method increased by 21.1 %. The effects of rotating speed, peak current, pulse duration, pulse interval, and tool electrode polarity on machining performance, including material removal rate, relative electrode wear ratio, and surface roughness were researched to determine the characteristics of the new process.

  相似文献   

19.
Electro-discharge machining (EDM) characteristics of tungsten carbide-cobalt composite are accompanied by a number of problems such as the presence of resolidified layer, large tool wear rate and thermal cracks. Use of combination of conventional grinding and EDM (a new hybrid feature) has potential to overcome these problems. This article presents the face grinding of tungsten carbide-cobalt composite (WC-Co) with electrical spark discharge incorporated within face of wheel and flat surface of cylindrical workpiece. A face grinding setup for electro- discharge diamond grinding (EDDG) process is developed. The effect of input parameters such as wheel speed, current, pulse on-time and duty factor on output parameters such as material removal rate (MRR), wheel wear rate (WWR) and average surface roughness (ASR), are investigated. The present study shows that MRR increases with increase in current and wheel speed while it decreases with increase in pulse on-time for higher pulse on-time (above 100 μs). The most significant factor has been found as wheel speed affecting the robustness of electro- discharge diamond face grinding (EDDFG) process.  相似文献   

20.
Abstract

Tungsten carbide (WC) is an extremely hard material which is used extensively in the manufacturing of tools and dies. In the presence of cobalt as a binder its machining becomes a difficult task because of interfacial bonding. In the EDM process, where electrical energy is used for the machining of the substance, the heat generated due to the plasma is responsible for removal of the substance at the interface. The heat generated is conducted differentially because of the composite structure of the tungsten carbide cermet. In order to improve the technological performance it is essential to understand the morphological features of tungsten carbide after machining. The studies have been conducted using different machining parameters. The objective of this study is to analyse the impact of machining parameters on the morphology of tungsten carbide suitable to withstand impact load on press forging for small components during operation. Experiments have been performed with the specially designed fixtures with proper flushing arrangements, to avoid arcing during the process. WC of P20 grade which is one of the most suitable grade substances to withstand load after EDM, has been used as work piece material for the entire study. Copper, graphite and copper tungsten electrodes have been used for the present study. The morphological features were studied with the help of the scanning electron microscope (SEM). It was observed that structural features varied with variation in electrode under similar experimental conditions. Phenomenon of such structures is discussed at length. The formations of cracks on WC have also been studied in detail. The detail of this study is presented in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号