首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
陈文琳  王荐  李伟  刘宁 《工具技术》2009,43(6):43-47
基于数值模拟技术,利用有限元软件模拟了金属切削过程及切屑的形成;得到了不同工件材料的切屑形态、切屑上应力应变和等效应力的分布,以及应变与切屑卷曲半径之间的关系;分析了等效应力、应变以及剪切应力的大小与分布对切屑形态和断屑的影响,得出切屑上应力、应变的不均匀分布是导致切屑卷曲的主要原因。该结论与切削理论相吻合,为高速切削塑性金属的断屑研究提供了依据。  相似文献   

2.
杨治国  曾宪唐 《机械》1992,19(2):9-13
对断屑机理及屑形控制方法进行了较深入的研究。提出了判断切屑的基本应变和卷曲应变大小的切屑应变系数K_e的表达式,以及控制K_e来形成短螺旋形类切屑的良好断屑方法和设计三维断屑槽结构的计算公式。应用本文的理论,成功地研制了一种新型三维断屑糟刀片。  相似文献   

3.
利用错齿BTA深孔钻削切屑弯曲变形规律,对导致错齿BTA内排屑深孔钻切屑断裂的影响因素进行了分析,通过试验研究了错齿BTA深孔钻削切屑的变形断裂随刀齿钻削半径、钻削工艺参数、断屑台尺寸的变化规律。研究结果表明,刀齿钻削半径对切屑厚度影响很大,随钻削半径的增大,各刀齿切屑厚度增大,切屑厚度最大值点均位于刀齿切屑大径边缘且中心齿、中间齿、外齿的切屑厚度最大值依次减小;与转速相比,进给量对切屑厚度和切屑应变增量的影响更大,随进给量增大,切屑厚度增大,切屑应变增量增大;随断屑台宽度减小、高度增大,切屑应变增量增大,断屑条件改善。  相似文献   

4.
在对断屑槽形状和切屑向上卷曲分析基础上,研究了三种典型断屑槽对切屑影响作用,并计算切屑卷曲半径的大小,对切屑折断预测提供了一定的借鉴作用。  相似文献   

5.
在切削加工304不锈钢的过程中会产生大量冗长切屑,损坏工件已加工表面,加快刀具磨损破损,有时可能威胁操作人员的安全,因此断屑已成为切削加工的重要一环。高压内冷却切削加工是一种从前刀面喷出高压切削液射流来冲断切屑的加工技术,通过研究高压内冷却车刀的断屑机理及试验比较来验证射流断屑效果。试验结果表明,在高压内冷却切削加工过程中,由于受到高压冷却液射流的冲击,切屑卷曲半径减小,应变增大,易于折断,极大地改善了断屑性能。  相似文献   

6.
高温合金广泛应用于航空航天领域,是一种典型的难加工材料,切削过程中切屑缠绕工件及刀具、不易折断,从而降低刀具寿命和已加工表面质量。PCBN是超硬刀具材料,加工高温合金等高温高强度钢性能优异,但由于刀具材料特性通常采用平前刀面,因此切削过程中断屑比较困难。高压冷却是金属高效切削加工中一种新型加工技术,可以有效改善断屑性能、提升断屑能力、提高刀具寿命和加工表面质量。目前对高压冷却断屑机理研究较少,且高压冷却切削仿真不易实现,为充分研究高压冷却下高温合金切削加工中的切屑折断机理,通过建立切屑卷曲半径预测模型和断屑模型,进行高压冷却下切屑折断机理研究,主要通过在高压冷却下,对PCBN刀具切削镍基高温合金进行试验研究,研究不同冷却液压力下切屑卷曲半径变化规律,对理论分析结果进行验证。研究结果表明:在高压冷却加工中由于高压冷却液的存在,切屑受到附加冷却液压力影响,使弯矩发生变化,造成切屑卷曲半径减小,最终导致切屑应变增大、切屑易于折断;且由于卷曲半径的改变使极限进给量和极限背吃刀量降低,使高压冷却加工改善断屑性能的效果非常明显。上述研究成果为实现高温合金高压冷却条件下的切削加工奠定了理论基础。  相似文献   

7.
为研究0Cr18Ni9(AISI 304)不锈钢切削加工过程,采用刚塑性有限元方法,建立有限元仿真模型,利用自适应网格(ALE)划分技术对其网格进行重新划分。根据Johnson-Cook本构模型建立工件材料模型,运用CrockroftLatham断裂准则来实现工件材料的断裂,刀屑界面摩擦采用剪切摩擦。通过模拟得到锯齿状切屑,并分析工件及切屑的等效应变、等效应力与主应力、切削温度及切削力的变化规律。该结果对研究不锈钢的切削机理将提供有用的依据。  相似文献   

8.
断排屑问题一直是错齿BTA内排屑深孔钻削的难点,通过建立切屑流经断屑台的几何变形模型分析了刀屑接触长度对错齿BTA钻削切屑的变形断裂的影响,采用有限元分析软件DEFORM-3D建立了错齿BTA钻头钻削仿真模型,对各刀齿切屑的形成及变形规律进行了分析,研究了刀屑接触长度随刀齿钻削半径分布规律及其随钻削条件的变化规律,并利用实验对仿真结果进行了验证分析。结果表明,仿真结果可信,刀齿钻削半径对切屑的变形及刀屑接触长度影响很大,刀屑接触长度随钻削进给量增大而增大,随转速增大而减小,随工件材料强度增大而增大。  相似文献   

9.
为了研究铝合金7050-T7451高速铣削机理,建立了能反应实际铣削状态的斜角切削有限元模型.该模型采用双刃螺旋立铣刀进行模拟,模拟过程考虑刀具的进给运动和旋转运动,工件材料模型通过高温拉伸实验与高速压缩实验得到,刀-屑接触摩擦采用可自动识别滑动摩擦区和粘结摩擦区的修正库仑定律,切削温度模型等效为窄带热源.采用建立的有限元仿真模型模拟了铣削过程中的切屑成形状态,分析了应力、应变和温度分布情况以及铣削力值.研究结果表明,铝合金高速铣削加工形成连续带状切屑,最大应力发生在第一变形区,切屑形成时应变最大,最高温度出现在刀、屑接触部位,模拟得到的铣削力可以接受.  相似文献   

10.
在实验和理论分析的基础上、本文提出了复合卷曲的切屑比以向上卷曲为主的切屑易于折断的观点,并且讨论了切屑产生复合卷曲的条件及在断屑槽设计和使用中的应用。  相似文献   

11.
枪钻加工渗碳钢20Cr深孔时断屑性能的改进   总被引:4,自引:3,他引:1  
在渗碳20Cr上加工细长孔时存在的主要问题是:散热困难和排屑不通畅。在分析了实际加工条件和被加工材料的特点后,优化了原有几何参数。经过在该材料上大量加工细长孔后,设计出一种新型枪钻。经试验验证:能够改善散热并使得切屑顺利排出,刀具寿命也因此延长了两倍。本文介绍了试验过程以及加工过程中对渗碳20Cr钻削断屑机理的进一步分析。  相似文献   

12.
李道波  王彪  李建  付力 《工具技术》2012,46(9):58-62
采用Deform-3D有限元分析软件对准干式单刃内排屑BTA钻削做了仿真研究。应用Deform-3D软件设置模拟参数为干式钻削,在不同的切削用量情况下对切削力的大小、刀具磨损以及切削温度场进行了仿真分析,讨论了断屑判据以及分屑的形成过程,为准干式深孔加工的切削参数和刀具参数的进一步优化提供了依据。  相似文献   

13.
麻花钻钻削钼圆材料过程有限元分析   总被引:1,自引:0,他引:1  
通过对标准麻花钻数学模型的研究,用Deform 3D建立了麻花钻钻削钼材料的有限元模型,并对钻削过程的应力应变、钻削温度和钻削轴向力的情况做了仿真研究。结果表明切削温度和轴向力都随麻花钻的转速及进给量的增加而增大,而选择合适的转速和进给量能使得材料的应变变小,切削形状良好。为钼材料的钻孔加工,工艺参数的选择提供了相关的理论依据。  相似文献   

14.
麻花钻的数学建模及钻削过程有限元分析   总被引:5,自引:0,他引:5  
为预测麻花钻的几何参数及钻削用量对钻削力和钻削温度的影响,通过对标准麻花钻的几何造型及锥面磨法的研究,用UG做了3D实体模型,基于Deform3D建立了有限元模型,并对钻削过程的钻削力和钻削温度的分布做了仿真研究。结果表明,扭矩、轴向力和切削温度均随麻花钻的直径增加而增大,随进给量的减小而降低。  相似文献   

15.
In this study, the cutting characteristics of a drill reamer, which has conventional twist drill cutting edges appended for reaming, were investigated. A drill reamer has three types of cutting edges, whose roles are drilling, semi-finishing, and finishing. The cutting characteristics of a conventional twist drill were compared to those of the drill reamer. The cutting characteristics were evaluated using the thrust force, cutting torque, surface roughness, wear behavior of the cutting edges, and cutting edge temperature. The study used a workpiece made of carbon steel. The temperature of the cutting edge for reaming reached a maximum value of approximately 420°C, even though the depth of the cut was very small. The inner surface roughness with the drill reamer was superior to that with the conventional drill, even under dry and low-speed cutting conditions. The abrasive wear observed on the margin face of the cutting edge used for reaming.  相似文献   

16.
枪钻在加工20CrMnTiH材料时存在断屑难、排屑难导致刀具磨损、寿命降低等主要问题。本文对实际加工条件和被加工材料的特点进行分析后,修改了钻尖的几何参数来进行改进。经过一系列试验研究证明,改进后的枪钻解决了实际加工中断屑难、排屑难的问题,并使刀具寿命提高了两倍。  相似文献   

17.
基于热弹塑性有限元理论在DEFORM3D软件中建立正交切削加工有限元模型.建模过程中考虑了工件材料本构关系、局部网格自动重划分、刀屑摩擦、切屑分离等影响切削仿真的关键因素,分析了切削过程中工件等效应力的分布.对工件在不同切削速度下的残余应力进行分析和比较,得出两者之间的定性影响关系.  相似文献   

18.
This paper presents an experimental investigation to verify the feasibility and effectiveness of heat pipe cooling in drilling operations. The basic idea is to insert a heat pipe at the center of the drill tool with the evaporator close to the drill tip and the condenser at the end of the drill. Consequently, the heat generated at the tool–chip interface can be removed by convection heat transfer. Experimental studies were involved in three cases, including solid drill without coolant, solid drill with coolant, and heat pipe drill. Drilling tests were conducted on a CNC machining center with full immersion cutting. The cast iron square block was used as the workpiece, and the high-speed steel was chosen for the drill tool material. Flank wear is considered as the criterion for tool failure, and the wear was measured using a Hisomet II Toolmaker’s microscope. The tests were conducted until the drill was rejected when an average flank wear greater than 0.10?mm was recorded. The results demonstrate that using a heat pipe in the drilling process can effectively perform thermal management comparable to the flooding coolant cooling used pervasively in the manufacturing industry, extending the tool life of the drill.  相似文献   

19.
通过合理选择刀具几何参数,针对麻花钻螺旋角及导程的研究,设计一种适合加工铝合金的变导程钻头。通过与普通(恒导程)麻花钻的对比切削试验,得出结论:在切削铝合金材料时,变导程钻头的切削性能优于普通恒导程钻头。其切屑形态较好,切削力小,不易粘刀,排屑顺利,被加工孔表面质量好。  相似文献   

20.
基于大变形一大应变理论、增量理论以及更新拉格朗日算法,建立二维弹塑性金属直角切削有限元模型;采用几何分离准则(距离准则)判断材料的分离,并自动对畸变网格进行重划分;通过用不同的刀具前角对金属直角切削过程进行数值模拟,分析总结结果,得出直角切削过程中在不同切削前角时切削力、刀具与工件的温度、应力应变的分布情况,为选用刀具形状、提高切削表面质量提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号