首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wear properties of a textured polyester powder coating with pyrogenic silica nanoparticles addition were evaluated. Raw powders of a commercial, textured polyester organic coating were mixed with low amounts of SiO2 nanoparticles (0.5–3 wt%) using ball milling, a simple and economical method. Nanoparticles were mixed into the powder of thermoset organic coating for 10 min in a two-body planetary ball mill. Particle size distribution of the powder was measured to evaluate the milling effect. The coatings were applied and cured in an industrial installation on aluminum substrates. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the coatings were taken to analyze the homogeneity of the organic coating. Roughness, gloss and color were measured in order to evaluate their appearance. The effect of nanoparticles on abrasive and erosion wear performances was measured. Pin-on-disk wear tests were carried out. Erosion measurements were performed with free fall of sand on the samples, a test based on ASTM D968 standard. The results showed that the milling process provides a good distribution of nanoparticles as no agglomerates were found. The addition of 0.5 wt% silica nanoparticles allows for improvement of the wear resistance of the coatings.  相似文献   

2.
《Ceramics International》2017,43(5):4390-4398
In this paper, the effect of the powder particle structure and substrate hardness during vacuum cold spraying (VCS) of Al2O3 is investigated. Our results help understand the underlying deposition mechanism during VCS in more detail and enable the tailoring and improving of the resulting coatings. Two structurally different alumina feedstocks were used for this study. We find that the loosely agglomerated powder bonds to the substrate primarily through coordinated deformation of the nano-sized powder particles. The sintered powder, on the other hand, bonds to the substrate through severe fracture and deformation of the particles. High-resolution transmission electron microscopy (HR-TEM) was employed to observe details in the interfacial microstructure of the coatings on the two substrates with differing hardness. The hard steel substrate facilitates particle fracture, which leads to cohesive particle/particle-bonding in the coating region close to the substrate. The softer aluminum substrate leads to strong interfacial coating/substrate-bonding because the particles are embedded into the substrate. In summary, the fracture and deformation of the feedstock as well as the substrate hardness affect both adhesion (coating/substrate bonding) and cohesion (particle/particle bonding) considerably.  相似文献   

3.
Polyurethane powder coating systems consisting of polyester resin, blocked polyisocyanate and two types of “nanopowders” containing core–shell nanoparticles where the core was silicone resin of very low glass transition temperature and the shell was poly(methyl methacrylate) were examined. The blocked polyisocyanate was synthesized using biuretpolyisocyanate obtained from ureapolyisocyanate as starting material capable for blocking and ɛ-caprolactam as blocking agent. The surface properties of cured powder coatings were investigated using scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The surface structure was correlated with the chemical structure of the coatings and macroscopic surface behavior: contact angle, surface free energy, gloss, abrasion resistance, hardness and adhesion to the steel surface.  相似文献   

4.
研究了热固性粉末涂料用作金属热喷涂涂层的封闭层及面层的防护技术,比较了分别喷涂环氧锌基重防腐粉末涂料、纯聚酯粉末涂料,喷涂环氧锌基重防腐粉末涂料后再喷涂纯聚酯粉末涂料以及热浸镀锌后喷涂纯聚酯粉末涂料等试样在不同盐雾和人工加速老化时间下的附着力.结果发现,只有熔融黏度偏低的环氧类粉末涂料适合用作封闭层.该复合涂层技术已应用于高速公路护栏上.  相似文献   

5.
The influence of steel surface pretreatment with different types of iron–phosphate coatings on the corrosion stability and adhesion characteristics of polyester coatings on steel was investigated. The phosphate coating was chemically deposited either from the simple novel plating bath, or with the addition of NaNO2, as an accelerator in the plating bath. The morphology of phosphate coatings was investigated using atomic force microscopy (AFM). The corrosion stability of polyester coatings on steel pretreated by iron–phosphate coatings was investigated by electrochemical impedance spectroscopy (EIS) in 3% NaCl solution, while “dry” and “wet” adhesion were measured by a direct pull-off standardized procedure. It was shown that greater values of pore resistance, Rp, and smaller values of coating capacitance of polyester coating, Cc, on steel pretreated with iron–phosphate coating were obtained, as compared to polyester coating on steel phosphated with accelerator, and on the bare steel. The surface roughness of phosphate coating deposited on steel from the bath without accelerator is favorable in forming stronger bonds with polyester coating. Namely, the dry and wet adhesion measurements are in accordance with EIS measurements in 3% NaCl solution, i.e. lower adhesion values were obtained for polyester coating on steel phosphated with accelerator and on the bare steel, while the iron–phosphate pretreatment from the novel bath enhanced the adhesion of polyester coating on steel.  相似文献   

6.
Ultrafine dry powder coating technology creates biocompatible polymeric coatings for implants. Nanoparticles (nTiO2) modify flow to prevent agglomeration and create homogenous coatings. Since polyester‐based coatings require the potentially harmful 1,3,5‐triglycidyl isocyanurate (TGIC) curing agent, this study's objective was to develop alternative TGIC‐free formulations. Epoxy and epoxy/polyester (1:1) hybrid mixtures were enriched with CaO (5% w/w) and nTiO2 (0.5% w/w), as functional additives and flow modifiers, respectively. Epoxy‐TiO2 and Hybrid‐TiO2 mixtures were prepared with micron‐sized TiO2 (25% w/w) to enhance biocompatibility. Polymer chips and additives were combined in a high‐shear mixer and passed through a sieve (35 µm) to yield ultrafine particles that were sprayed (20 kV) onto metal sheets and cured (200 °C). Particle size analyses showed that all formulations were ultrafine (D 0.5 < 35 µm), and epoxy/polyester/TiO2 mixtures were the smallest (D 0.5 = 16.34 µm). Angles of repose, avalanche and resting indicated reduced flowability when epoxy was enriched with TiO2 and/or polyester, although all formulae were highly flowable. Elemental mapping of coatings showed a predominance of carbon (C) and oxygen (O) from resin polymer, and elevated titanium (Ti) in the TiO2 enriched surfaces. However, calcium (Ca) clusters were higher on the epoxy/polyester Hybrid coatings. Optical microscopy showed human mesenchymal cells (ATCC CRL‐1486) attached and spread out, and Alizarin Red staining showed mineral deposits in 2–4 week cultures, particularly on epoxy/polyester/TiO2 Hybrid surfaces. These epoxy resin‐based formulations were effective TGIC‐free substitutes for ultrafine dry powder coatings on implants. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43960.  相似文献   

7.
The surface modification of nano calcium carbonate (nCaCO3) particles was carried out with a soluble compound of lanthanum via a coating process of chemical deposition, and nCaCO3 particles covered with a compound of lanthanum (nCaCO3? La) were prepared. The polypropylene (PP)/nCaCO3 and PP/nCaCO3? La composites were prepared with a two‐roll mill. The measurements of the mechanical properties showed that the impact strength of the composites increased at first and then decreased with the addition of fillers, and the tensile strength was reduced at the same time. The impact strength of PP/nCaCO3? La was higher than that of PP/nCaCO3, and the impact strength of PP/nCaCO3? 5La was three times that of virgin PP. Transmission electron microscopy and scanning electron microscopy showed that nCaCO3? La dispersed well in the PP matrix, the size distribution of the particles was uniform, and nCaCO3? La adhered to the PP matrix very closely. The crystallization properties of virgin PP and its composites were studied with differential scanning calorimetry and wide‐angle X‐ray diffraction. The results showed that the β‐PP phase easily formed with the addition of the lanthanum compound. In comparison with virgin PP, the addition of nCaCO3? La led to a higher crystallization temperature. The size of the crystallites increased with the addition of nCaCO3? La, and the nucleation of PP crystalline was also improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1154–1160, 2005  相似文献   

8.
Nanostructured and conventional alumina–3 wt.% titania coatings were deposited by air plasma spraying (APS). The microstructure and phase composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties including hardness, adhesion strength, crack extension force (GC) and sliding wear rate were measured. Equiaxed α-Al2O3 grains were observed in the nanostructured Al2O3–3 wt.% TiO2 coating and the diameter of α-Al2O3 grains were about 150 to 700 nm in size. The microhardness of both kinds of coating was similar and about 820 HV0.2. However, the adhesion strength and crack extension force of the nanostructured coating increased by 33 and 80%, respectively, as compared with those of the conventional coating. The wear rate of the nanostructured coating was lower than that of the conventional coating. The results were explained in terms of characteristics of the powders and microstructure of the coatings.  相似文献   

9.
Experimental studies were carried out on the curing behavior of unsaturated polyester and epoxy resins. The latter were modified with three different fillers (CaCO3, CaSiO3, and glass powder) and their curing behaviors studied. Polyesters exhibited faster cure rates than the epoxy resins. The gel time of the epoxy resins decreased with the addition of fillers. Data indicated that the peak exotherm of these thermosetting resins increased when filled with glass powder. The hardness of the curing mass increased with curing time. The use of gel-hardness number as a quality control parameter has been suggested.  相似文献   

10.
In this study, blocked polyisocyanate crosslinkers (PIC) for powder coatings were synthesized using isophorone diisocyanates (IPDI), formic acid, poly(dimethylsiloxane), ?-caprolactam, dibutyltin dilaurate as well as triethylamine as catalysts. The chemical structures of these compounds were confirmed by means of IR and NMR spectroscopy and the molecular weight distributions were investigated using gel permeation chromatography (GPC). Polyurethane powder coating systems consisting of polyester resin and synthesized polyisocyanate were examined. The surface structure of powder coatings was investigated with confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). The surface structure was correlated with the chemical structure of the coatings and macroscopic surface behavior: contact angle, surface free energy, gloss, abrasion and scratch resistance, hardness as well as adhesion to steel surface.  相似文献   

11.
The dendritic polyester, dendritic maleate, and epoxy/dendritic maleate resins were synthesized and analyzed by acid value, hydroxyl value, FT-IR, TGA, and DSC. The dendritic maleate and epoxy/dendritic maleate resins were applied in UV-curable coating, and the properties of the UV-curable coatings were compared. With the introduction of epoxy resin, the epoxy/dendritic maleate resin formed larger cross linked structure and more cavities which helped to improve the properties of coating. The epoxy/dendritic maleate resin exhibited higher thermal decomposition temperature and T g. The coating based on equal content of epoxy resin and dendritic maleate had higher gel content and better properties such as impact strength, adhesive strength, flexibility, pencil hardness, and solvent resistances. The SEM figures showed that the epoxy/dendritic maleate resin could form more cavities and improve the toughness of coating.  相似文献   

12.
In this study, we explored the phase compositions and morphologies of the ceramic coatings from different aluminum sources (aluminum isopropoxide, aluminum nitrate, or a mixture of the two) prepared using cathode plasma electrolytic deposition (CPED) onto AZ31 magnesium alloys. Scanning electron microscopy and X-ray diffraction analyses of these coatings indicate that the deposited ceramic made from aluminum isopropoxide was composed of γ-Al2O3 whereas the one made from aluminum nitrate was composed of MgA12O4, and that the former was more compact and uniform than the latter. A composite coating was prepared using epoxy resin as a protective layer that sealed the micropores on the CPED coating, thereby further improving its anticorrosion property. The elemental distribution of the cross-section of the composite coating was examined via energy dispersive spectroscopy. Corrosion resistance was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy in a 3.5?wt% NaCl medium, and a salt spray test. The results indicate that the corrosion protection property of the Al2O3/epoxy resin coating of the magnesium alloy was better than that of the single Al2O3 coating. A cross-cut test revealed that the adhesion of the Al2O3/epoxy resin composite coating to the magnesium alloy surface was better than that of the single epoxy resin coating. The approach presented herein provides an attractive way to modify the surface of magnesium alloys to improve anticorrosion.  相似文献   

13.
Organic–inorganic hybrid nanocomposite coatings contain inorganic particles that are dispersed in organic phase in nanometric dimensions. Ceria and zirconia colloidal dispersions are uniformly distributed in the epoxy silica-based hybrid nanocomposite by sol–gel method and coated on 1050 aluminum alloy substrate with spin-coating technique. The hybrid sol is prepared by organic–inorganic precursors formed by hydrolysis and condensation of 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate (TEOS) in acidic solution using bisphenol A as networking agent and 1-methylimidazole as initiator in the presence of various ratios of ZrO2 and CeO2 colloidal nanoparticles. Particle size distribution, surface morphology and inorganic components distribution were determined by scanning electron microscopy (SEM) and EDXA techniques. SEM and Si, Zr, Ce mapping micrographs proved the uniform distribution of nanoparticles in the coatings. Transmission electron microscopy indicated that the nanoparticles dimension stay at the nanoscale level. The glass transition temperature (T g) and loss properties (damping) of coatings were evaluated by dynamic mechanical thermal analysis. The corrosion protection of the coatings on the 1050 AA substrate was studied by potentiodynamic measurements. The results indicated that by introducing ceria nanoparticles in 1:1 molar ratio to TEOS in coating composition, corrosion protection was improved. However, the simultaneous presence of two nanoparticles (i.e., ceria and zirconia in 1:1 molar ratio) in the coating compositions increased the corrosion protection efficiency up to 99.8 %. The multiple glass transitions and shifting to higher and wide range of temperatures by adding ceria and zirconia nanoparticles indicated a better network interaction between inorganic nanoparticles and organic molecular chains which also led to better corrosion protection of the coating in this composition.  相似文献   

14.
This study describes the effects of the addition of inorganic nanosized UV absorbers on physico-mechanical and thermal properties of an exterior commercial acrylic-based waterborne stain for wood. Electronic microscopy and water vapor (WV) permeability measurements were performed to characterize the free films of the acrylic stain and resulting nanocomposite coatings. An accelerated weathering method was used to evaluate aging behavior of the coatings on wood through appearance, Tg, abrasion resistance, adhesion strength, hardness and Young's modulus changes. In addition to improving the protection against UV, the doped TiO2 and silica-coated ZnO nanoparticles in powder form have improved the abrasion resistance and barrier effect against water vapor diffusion of the acrylic stain. For most of nanocomposite coatings, the addition of ZnO hydrophilic nanoparticles in predispersed form has resulted in a decrease in WV permeability, while the adhesion strength and abrasion resistance of those coatings were negatively affected. The addition of ZnO nanoparticles has decreased the Tg of the acrylic stain. Finally, the accelerated weathering has induced an increase in Tg, hardness, Young's modulus (stiffness) and an increase in apparent adhesion strength and abrasion resistance of the coatings. The Tg values of the aged nanocomposite coatings were lower than that of unmodified acrylic stain.  相似文献   

15.
This study describes the effects of the addition of inorganic nanosized UV absorbers on physico-mechanical and thermal properties of an exterior commercial acrylic-based waterborne stain for wood. Electronic microscopy and water vapor (WV) permeability measurements were performed to characterize the free films of the acrylic stain and resulting nanocomposite coatings. An accelerated weathering method was used to evaluate aging behavior of the coatings on wood through appearance, Tg, abrasion resistance, adhesion strength, hardness and Young's modulus changes. In addition to improving the protection against UV, the doped TiO2 and silica-coated ZnO nanoparticles in powder form have improved the abrasion resistance and barrier effect against water vapor diffusion of the acrylic stain. For most of nanocomposite coatings, the addition of ZnO hydrophilic nanoparticles in predispersed form has resulted in a decrease in WV permeability, while the adhesion strength and abrasion resistance of those coatings were negatively affected. The addition of ZnO nanoparticles has decreased the Tg of the acrylic stain. Finally, the accelerated weathering has induced an increase in Tg, hardness, Young's modulus (stiffness) and an increase in apparent adhesion strength and abrasion resistance of the coatings. The Tg values of the aged nanocomposite coatings were lower than that of unmodified acrylic stain.  相似文献   

16.
Thermal stability of isotactic polypropylene with or without calcium carbonate nanoparticles (nCaCO3) was investigated by chemiluminescence under isothermal regime at 190 °C. Two kinds of nCaCO3 particles, i.e., (neat and stearic acid-coated ones) were used. The contents of nCaCO3 within the iPP/nCaCO3 nanocomposites were 5, 10, 15, 20, and 25% w/w. Several parameters, i.e., oxidation induction time, oxidation half-time, maximum oxidation time, and oxidation rate were used to quantify the thermal stability of both the neat and the nCaCO3-filled iPP systems. The contribution of nanoparticles on the progress of oxidation is discussed. It has been found that the concentration of nCaCO3 increases the stability of systems when nanoparticles were covered, while the filler consisted of unmodified particles, the decrease in thermal strength with the increase in filler concentration was noticed.  相似文献   

17.
AlTiN-Ni coatings with various Ni contents (0–3?at%) were deposited using cathodic arc evaporation. X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, a nanohardness tester, scratch-adhesion tester, and cutting tester were used to examine the microstructure, mechanical properties, and cutting performance of the coatings. The AlTiN coatings exhibited a columnar structure, while the AlTiN-Ni coatings exhibited a nanocrystal structure due to the formation of nc-AlTiN/Ni nanocomposite coatings. The nanohardness of the AlTiN-Ni coatings decreased from 26.2?GPa to 20.9?GPa as the Ni content increased from 0 to 3?at%. At an Ni content of 1.5?at%, the coating possessed a high toughness and sufficient adhesion strength; however, these dropped drastically for the AlTiN-Ni coating with 3?at% Ni owing to the presence of amorphous Ni. The results for the Inconel 718 turning indicated that the wear mode is adhesion at the rake face, abrasion and adhesion (built-up edge) at the flank face, and chipping at the cutting edge. Compared to AlTiN-Ni3 and AlTiN-coated tools, the lifetime of the AlTiN-Ni1.5 coated tool increased to 160% at a cutting speed of 40?m/min. This was attributed to less adhesion at the rake face and chipping at the cutting edge, due to the nanocrystal structure and higher toughness of the AlTiN-Ni1.5 coating.  相似文献   

18.
In this work, graphene nanoplatelets have been synthesized using liquid phase exfoliation of graphite flake powder. The exfoliated graphene nanoplatelets were identified and characterized by using UV–Visible–NIR spectroscopy, High resolution transmission electron microscopy, electron diffraction, scanning electron microscopy and X-ray diffraction. The obtained graphene nanoplatelets and nano alumina at various weight ratios were dispersed in an epoxy matrix to enhance the surface roughness (Ra), micro hardness (Hv) and coefficient of friction (CoF) of epoxy hybrid nanocomposites. The results showed that the Ra and CoF value for the combined loading of 0.2 wt% of graphene nanoplatelets and 0.8 wt% of alumina into the epoxy was decreased to 41.02 and 20.01% whereas, the Hv value was increased to 10.04% when compared with the neat epoxy. The improved mechanical and tribological behaviors are suitable for the applications bearing and coating.  相似文献   

19.
Dry ball milling of graphite under CO2 pressure in a planetary ball mill affords carboxylated multilayer graphene nanoplatelets as carbon nanofillers (MFG‐CO2) for carbon/epoxy spray coatings combining electrical conductivity up to 0.09 S cm?1 with excellent adhesion and improved toughness. As confirmed by µCT‐imaging, the two‐stage homogenization by means of a speed mixer with subsequent shearing in a three‐roll mill uniformly disperses up to 60 wt% MFG‐CO2 in aqueous emulsions of epoxy resins and hardener without impairing spray coating. The MFG‐CO2 content governs surface roughness, as determined by 3D laser microscopy, gloss, electrical conductivity, and toughness without adversely affecting excellent adhesion. Mechanochemical tailoring MFG nanofillers holds great promise for the development of advanced epoxy spray coatings exhibiting an improved balance of thermooxidative, chemical and environmental stability, electrical and thermal conductivity, toughness, corrosion, and barrier resistance.  相似文献   

20.
Anticorrosion behavior of epoxy/poly(aniline-co-pyrrole)/ZnO (EPAPZ) coating on stainless steel 304 alloys is investigated using the electrochemical impedance spectroscopy (EIS) method, and the coating is compared with epoxy/polyaniline/ZnO (EPAZ) and pure epoxy (EP) coatings. Scanning electron microscopy images are used for structural characterization and to compare the particle size of nanoparticles. EIS result showed that coating resistance for EPAPZ, EPAZ, and EP coatings after 90 days of immersion in 3.5% NaCl was 1.18 × 107, 1.08 × 106, and 4.28 × 104 Ω cm−2, respectively. In addition, the volume percentage of water absorbed by the coating, which could be obtained by coating capacitance, is 2.81, 4.21, and 9.11, respectively. Immersion tests showed 0.063, 0.194, and 0.752% of weight loss in the metals under EPAPZ, EPAZ, and EP coatings, respectively. These results show that the EPAPZ coating has superior anticorrosive performance compared with EPAZ and EP coatings. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48265.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号