首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
综述了碳化硅增强铝基复合材料的几种主要制备工艺,重点阐述了高能超声半固态复合法制备SiCp/Al复合材料.首先用渗流法制备SiC体积分数高的SiCp/Al预制块,进行SiC预分散,然后将预制块加入处于半固态温度条件下的铝合金熔体中,最后导入超声波进行搅拌.此法很好地改善了增强颗粒与基体之间的润湿性,使SiC在基体中均匀...  相似文献   

2.
本工作采用一种半固态搅拌与热轧工艺制备A356-10%B_4C_p(质量分数,下同)复合板材,研究了半固态搅拌参数对A356-10%B_4C_p复合材料铸造及热轧态显微组织的影响。研究发现:搅拌温度为580℃、搅拌时间为15 min、搅拌转速在800 r/min以内时,α-Al的晶粒平均直径和平均圆度随着搅拌速度的增加而减小,B_4C颗粒的分布也随之更加均匀。当搅拌转速超过800 r/min时,α-Al晶粒平均直径和平均圆度反而不再减小,且B_4C颗粒的分布不均匀。当搅拌温度为580℃、搅拌转速为800 r/min、搅拌时间在5~35 min内时,α-Al晶粒平均直径和平均圆度随着搅拌时间的延长而减小,B_4C颗粒的分布也随之均匀。优化的工艺参数为:搅拌温度为580℃,搅拌转速为800 r/min,搅拌时间为35 min。该工艺制备的铸锭经过热轧后,可获得表面光洁的A356-10%B_4C_p复合板材。  相似文献   

3.
高嵩  姚广春 《材料导报》2006,20(Z1):462-464
阐述了搅拌铸造制备短碳纤维增强铝基复合材料孔隙率的测定方法,分析了复合材料中形成孔隙的原因,试验从复合温度、搅拌桨形状、搅拌速度、保温时间和碳纤维加入量等条件入手,研究了影响搅拌铸造制备铝基复合材料孔隙率的关键因素.结果表明:复合温度控制在760℃、采用平面搅拌桨、搅拌速度为1200r/min、保温30min可有效降低复合材料的孔隙率,提高复合材料质量.  相似文献   

4.
利用直桨叶搅拌器在圆柱坩埚内机械搅拌C-SiC/Cu半固态浆料,研究搅拌速度为200 r/min、搅拌器上下移动速度为10 mm/s时C-SiC/Cu半固态浆料中石墨颗粒和SiC颗粒(SiCP)的均匀性。结果表明:直桨叶与水平面的夹角γ与两种颗粒在坩埚顶部和底部含量偏差都存在二次关系,当γ=30°时石墨颗粒和SiCP在坩埚中轴向分布均匀,但同一水平面内的SiCP仍存在偏聚现象,说明SiCP的偏聚是导致常规直桨叶机械搅拌C-SiC/Cu半固态浆料整体不均匀的主要原因;利用双层桨叶搅拌器代替常规直桨叶搅拌器,通过调整叶片层间距h,当h=10~20 mm时可以消除SiCP的偏聚现象;通过对单层桨叶搅拌器和双层桨叶搅拌器机械搅拌铸造获得的C-SiC/Cu复合材料进行磨损试验发现,单层桨叶搅拌器不同部位磨损率存在差异,双层桨叶搅拌器磨损率几乎相同。说明SiCP的偏聚可以通过增大机械搅拌剪切力度得以消除,利用双层桨叶搅拌器进行机械搅拌可以获得均质的C-SiC/Cu半固态浆料。   相似文献   

5.
本文研究了用双辊铸机生产的SiCp/A356复合材料薄带中SiC的分布规律,着重分析了SiC颗粒的体积分数(3%~16%)和薄带的铸造速度(0.5~10m/min)对SiC颗粒分布均匀性的影响,结果表明,较高的SiC含量或较高的铸造速度均可抑制薄带表面贫SiC层的形成。  相似文献   

6.
以SiC/Cu复合包裹粉体为增强相,采用真空搅拌铸造技术制备SiC/ADC12铝基复合材料,研究制备工艺条件对复合材料力学性能的影响,同时借助X射线衍射(XRD)和扫描电子显微镜(SEM)等测试分析手段对其物相结构进行表征。结果表明:SiC/Cu复合粉体显著改善了SiC颗粒在熔融铝合金基体中的润湿性和分散性。当搅拌温度为580℃,搅拌时间为30min,复合粉体添加量为4%(质量分数)时,复合材料获得最佳的力学性能,拉伸强度283MPa,硬度HB133,较基体合金分别提高24.1%和77.3%,较普通SiC增强复合材料提高15.5%和26.7%。  相似文献   

7.
利用搅拌铸造-热挤压-轧制工艺制备SiCp/2024复合材料薄板。通过金相观察(OM)、扫描电镜(SEM)及力学测试等手段研究了该复合材料在铸态、热挤压态及轧制态下的显微组织及力学性能,分析了材料在塑性变形过程中显微组织及力学性能的演变。结果表明,该复合材料铸坯主要由80~100μm的等轴晶组成,粗大的晶界第二相呈非连续状分布,SiC颗粒较均匀地分布于合金基体中;热挤压变形后,晶粒沿挤压方向被拉长,SiC颗粒及破碎的第二相呈流线分布特征;轧制变形后,基体合金组织进一步细化,晶粒尺寸为30~40μm,SiC颗粒破碎明显,颗粒分布趋于均匀,轧制变形对挤压过程中形成的SiC颗粒层带状不均匀组织有显著的改善作用。数学概率统计指出,塑性变形有利于提高颗粒分布的均匀性。力学测试表明,塑性变形后,复合材料的抗拉强度、屈服强度和延伸率显著提高。SiCp/2024铝基复合材料主要的断裂方式为:合金基体的延性断裂、SiC颗粒断裂及SiC/Al界面脱粘。  相似文献   

8.
SiCp/Al基复合材料的高压扭转试验   总被引:1,自引:1,他引:0       下载免费PDF全文
采用高压扭转(high-pressure torsion,HPT)工艺制备SiCp/Al基复合材料,试验发现随着扭转半径的增加,剪切应变增大,SiC颗粒分布逐渐均匀;升高温度,SiC颗粒分布的均匀性好;随着扭转半径的增加材料的硬度先增加后减小,且材料越致密,SiC含量越多,分布越均匀,材料硬度越高。  相似文献   

9.
综述了搅拌铸造制备SiCp/Al复合材料的研究现状,重点包括SiCp/Al复合材料的界面改性技术、搅拌复合方法和铸造成型技术,同时阐述了SiCp/Al复合材料的增强断裂机制,并归纳总结了SiCp/Al复合材料的各项性能,最后指出了搅拌铸造法制备SiCp/Al复合材料过程中存在的问题,并展望了该种方法的应用前景。  相似文献   

10.
徐志锋  余欢  汪志太  郑玉惠  胡美忠  蔡长春  严青松 《功能材料》2007,38(10):1610-1613,1617
采用真空气压浸渗法制备了高体分小尺寸SiCp/Mg复合材料,研究了真空压力对小尺寸SiCp多孔体浸渗的影响规律及SiCp/Mg复合材料的热膨胀性能.实验表明,在浸渗温度为983K,压力0.3MPa,保压5min的条件下,其中,能有效浸渗的振实堆积的单一尺寸SiCp多孔体的最小粒径达到了13μm;而32μm的SiCp/Mg复合材料的密度为2.625g/cm3,SiC颗粒体积分数达到了58.2%.OM、XRD分析表明镁液渗透均匀,无明显的气孔、缩松和熔剂夹杂等铸造缺陷;Mg基体、α型SiC是复合材料的主要组成相,同时还含有少量的MgO、Mg2Si相.此外,32μm SiCp/Mg复合材料在30~200℃温度范围内的平均热膨胀系数为6.5×10-6/K,表现出了优异的热膨胀性能.  相似文献   

11.
The novel stir casting assisted by ultrasonic treatment processing was studied. Unlike traditional stir casting, short semi-solid stir time was needed for addition and pre-dispersion of the particles in the novel processing. For ultrasonic treatment, there existed an optimal time. Both too short and too long time for the treatment resulted in nonhomogeneous particle distribution. Furthermore, the liquid stirring after ultrasonic treatment was proved to be necessary to further improve particle distribution. The mechanical properties of the composites fabricated by different parameters indicated that ultrasonic treatment evidently improved the mechanical properties compared with traditional stir casting. 5–20% SiCp/AZ91 composites were fabricated by the novel processing. The particle distribution was uniform in these composites. The grains were refined by addition of SiC particles. Grain sizes of composites decreased with the increases of particle contents. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased.  相似文献   

12.
为实现SiCp/Al复合材料的高质量可靠焊接,推广SiCp/Al复合材料在各领域的应用,调研了国内外SiCp/Al复合材料不同焊接方法的研究现状。在熔化焊方面,国内外学者通过调整工艺参数、在焊缝中加入Ti元素发生诱发反应等方法,抑制了焊缝中Al4C3针状脆性相的形成,从而提高了焊接接头的力学性能。在搅拌摩擦焊方面,国内外学者针对不同材料设计了专用的焊接搅拌头,以保证它们具备高耐磨性与足够的冲击韧性,在焊接过程中不出现破损情况;关注了焊接过程中焊接头转速、焊接速度、轴向力与热输入等因素,以获得力学性能优秀、晶粒细小均匀的焊接接头。在扩散焊方面,国内外学者探究了中间夹层对焊缝界面间原子相互扩散的促进作用;采取不同工艺参数,以外加超声或电子束表面加热等方式促进了原子间的相互扩散,以获得力学性能优异的焊接接头,提高焊接效率。在钎焊方面,国内外学者通过探究钎料与SiCp/Al复合材料之间的润湿性来组合钎料与钎剂,通过化学腐蚀处理表面暴露颗粒增强相、在复合材料表面电镀金属等方法来增大钎料与增强相的润湿性、解决钎料铺展受阻的问题,以进一步提高钎焊焊接接头质量。  相似文献   

13.
Copper coated steel fibers reinforced LM13 aluminum alloy composites have been prepared using stir casting process. Experiments have been designed using response surface methodology (RSM) by varying wt % of reinforcement (0–10), stirrer speed (350 min−1–800 min−1) and pouring temperature (700 °C–800 °C). Microstructure and hardness of composites have been investigated. Analysis of variance, significance test and confirmation tests have been performed and regressions model has been developed to predict the hardness of composites. Response surface plots reveal that hardness of composites increases with increasing wt % of reinforcement and stirrer speed. The optimum stir cast process parameters for obtaining higher hardness are found to be the wt % of reinforcement of 8.2, pouring temperature of 748 °C and stirrer speed of 708 min−1.  相似文献   

14.
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.  相似文献   

15.
研究使用功率超声制备SiCp颗粒增强铝基复合材料的新方法,并对所制得不同粒度SiCp的复合材料进行了组织分析和磨损性能的测试。实验结果表明,利用功率超声可以制备出颗粒在基体中均匀分布的复合材料,可增加SiCp的复合量,使SiCp与基体间润湿性良好。小粒度的SiCp颗粒增强复合材料较大尺寸的复合材料的耐磨性要好。  相似文献   

16.
概述了电子封装基片材料的基本性能要求;讨论了SiC陶瓷基片常用的4种烧结工艺,即常压烧结、热压烧结、反应烧结和放电等离子烧结;介绍了SiCp/Al复合材料的制备方法,即搅拌铸造法、无压渗透法、喷射沉积法、粉末冶金法;据此进一步提出了SiC陶瓷基片材料的发展方向。  相似文献   

17.
Thermomechanical physical simulation is applied to get the optimum hot rolling parameters of aluminium silicon carbide composites. Wrought Al 6061 and 6082 – Silicon carbide particulate (SiCp) metal matrix composite strips are prepared by stir‐casting followed by sequential rolling assisted with intermediate heat treatment to allow crystallization recovery and further processing. SiCp are used in two microgrit grades; namely F500 and F800. The reinforcing particulates are used after surface oxidation and 0.3% Mg is added during melting and stirring for loss substitution. With the pre‐treatments applied, SiCp are successfully inserted in the Al matrix, better wetting between particles and matrix, better particles distribution, less agglomeration and minimized reactions between SiC particles. Thermo‐mechanical simulation as a tool for physical simulation indicates that rolling at 450°C using a rate of 1 s–1 rate represent suitable rolling conditions. Successive hot rolling resulted in decreasing void percent and SiCp agglomeration. Hence, enhanced mechanical properties are achieved.  相似文献   

18.
采用快凝甩带技术制备了6组不同Ti含量的(Al-10Si-20Cu-0.05Ce)-xTi急冷箔状钎料,并对SiCp/6063Al复合材料进行真空钎焊,然后对钎料及接头的显微组织和性能进行分析。结果表明,急冷箔较常规铸态钎料的组织细小、均匀;固、液相线降低,熔化区间变窄;随着Ti含量的增加,急冷箔中片状Al-Si-Ti金属间化合物相增多,导致钎料脆性增加;6组钎料在复合材料上润湿性较差,但在6063Al合金上润湿性良好。在580℃钎焊温度、保温30min条件下,采用1%Ti含量急冷箔状钎料成功连接了SiCp/6063Al复合材料,钎焊接头组织致密、完整,急冷箔状钎料与6063Al合金基体连接界面可进行充分的冶金结合,且接头剪切强度达到104.9 MPa;钎焊前采用夹具增加接头压力可显著提高接头的连接质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号