共查询到20条相似文献,搜索用时 0 毫秒
1.
Qiusheng Li Yuncheng He Yinghou He Kang Zhou Xuliang Han 《Structure and Infrastructure Engineering》2019,15(1):54-71
This article presents the observations of the atmospheric boundary layer (ABL) and wind effects on a 600 m high skyscraper during a landfall typhoon. Wind structure and characteristics throughout the entire ABL are presented and discussed based on records from a Doppler radar wind profiler and near-ground measurements at several meteorological stations. Wind speed profiles with the feature of low-level jets and radial-distance and exposure dependences of gradient height are stressed. Afterwards, wind-induced pressures on building surfaces of the skyscraper are investigated with highlights on non-Gaussian probability distributions of negative pressures and vortex shedding occurred alternately at two sides of the building. The structural responses measured by both accelerometers and strain gauges are analyzed subsequently. Modal parameters of the skyscraper and their dependence on response amplitude are presented and discussed. This study aims to provide useful information for the wind-resistant design of skyscrapers in tropic cyclone-prone regions. 相似文献
2.
Monitoring of structural modal parameters and dynamic responses of a 600m‐high skyscraper during a typhoon 下载免费PDF全文
Yinghou He Qiusheng Li Hongping Zhu Xuliang Han Yuncheng He Xiao Li 《The Structural Design of Tall and Special Buildings》2018,27(6)
This paper presents field measurement results of structural dynamic properties and wind‐induced responses of 600m‐high Ping‐An Finance Center in Shenzhen during the passage of Typhoon Haima. The field measurements included wind speed, wind direction, and structural acceleration responses during the typhoon. Analysis of the field measurements is carried out to investigate the wind‐induced structural vibrations and dynamic properties of the skyscraper under typhoon condition. In the analysis, natural frequencies and damping ratios of Ping‐An Finance Center are estimated using Peak‐Picking method, half‐power bandwidth method in frequency domain, and random decrement technique in time domain, respectively. Two band‐pass filtering methods, namely, elliptical filtering method and Kaiser‐window FIR filter, are adopted to deal with the measured acceleration signals. Consequently, the modal parameters identified with the Peak‐Picking, half‐power bandwidth, and random decrement technique methods are presented and discussed in detail. In addition, the probabilistic characteristics of the recorded acceleration responses are analyzed using the generalized extreme value distribution, and then the serviceability of the skyscraper during the typhoon is evaluated. 相似文献
3.
《Structure and Infrastructure Engineering》2013,9(9):829-845
This paper presents the reliability analysis approach of long-span cable-stayed bridges based on structural health monitoring (SHM) technology. First, the framework of structural reliability analysis is recognised based on SHM. The modelling approach of vehicle loads and environmental actions and the extreme value of responses based on SHM are proposed, and then models of vehicle and environmental actions and the extreme value of inner force are statistically obtained using the monitored data of a cable-stayed bridge. For the components without FBG strain sensors, the effects and models (extreme values) of dead load, unit temperature load, and wind load of the bridge can be calculated by the updated finite element model and monitored load models. The bearing capacity of a deteriorated structure can be obtained by the updated finite element model or durability analysis. The reliability index of the bridge's critical components (stiffening girder in this study) can be estimated by using a reliability analysis method, e.g. first order reliability method (FORM) based on the models of extreme value of response and ultimate capacity of the structure. Finally, the proposed approach is validated by a practical long-span cable-stayed bridge with the SHM system. In the example, reliability indices of the bridge's stiffening girder at the stage after repair and replacement after 18 years of operation, and the damaged stage are evaluated. 相似文献
4.
《Structure and Infrastructure Engineering》2013,9(8):1049-1058
The Federal Highway Administration Long-term Bridge Performance Programme initiated an International Bridge Study by selecting a steel stringer bridge as a benchmark structure for structural health monitoring. As a part of this programme, the authors studied the application of the Long-Gauge Fibre Bragg Grating (LG-FBG) sensors on this bridge. This paper aims at illustrating the LG-FBG-related state-of-the-art technologies by taking the bridge as the test bed. (1) The concept of the LG-FBG sensor for area sensing is presented. Most fibre optic sensors measure point strains for local monitoring. In contrast, the developed LG-FBG area sensor has a long gauge (e.g. 1–2 m), and it can be connected to each other to make a sensor array for distributed strain measuring; (2) spectral analyses of the macro-strain time histories are performed to identify structural frequencies, and the results are compared with those estimated from acceleration measurements; (3) the neutral axis position of the girder of the investigated bridge is estimated from the recorded macro-strain time histories, and the results are compared with those from static truck tests and (4) a modal macro-strain-based damage index is applied for damage detection of the steel stringer bridge. 相似文献
5.
Ting‐Hua Yi Hong‐Nan Li Ming Gu 《The Structural Design of Tall and Special Buildings》2011,20(7):881-900
Careful selection and placement of sensors are the critical issue in the construction and implementation of an effective structural health monitoring system. A hybrid method termed the optimal sensor placement strategy (OSPS) based on multiple optimization methods is proposed in this paper. The initial sensor placement is firstly obtained by the QR factorization. Then, using the minimization of the off‐diagonal elements in the modal assurance criterion matrix as a measure of the utility of a sensor configuration, the quantity of the sensors is determined by the forward and backward sequential sensor placement algorithm together. Finally, the locations of the sensor are determined by the dual‐structure coding‐based generalized genetic algorithm (GGA). Taking the scientific calculation software matlab (MathWorks, Natick, MA, USA) as a platform, an OSPS toolbox, which is working as a black box, is developed based on the command‐line compiling and graphical user interface‐aided graphical interface design. The characteristic and operation method of the toolbox are introduced in detail, and the scheme selection of the OSP is carried out on the world's tallest TV tower (Guangzhou New TV Tower) based on the developed toolbox. The results indicate that the proposed method is effective and the software package has a friendly interface, plenty of functions, good expansibility and is easy to operate, which can be easily applied in practical engineering. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
In recent years, there has been an increasing interest in permanent observation of the dynamic behaviour of bridges for long-term monitoring purpose. This is due not only to the ageing of a lot of structures, but also for dealing with the increasing complexity of new bridges. The long-term monitoring of bridges produces a huge quantity of data that need to be effectively processed. For this purpose, there has been a growing interest on the application of soft computing methods. In particular, this work deals with the applicability of Bayesian neural networks for the identification of damage of a cable-stayed bridge. The selected structure is a real bridge proposed as benchmark problem by the Asian-Pacific Network of Centers for Research in Smart Structure Technology (ANCRiSST). They shared data coming from the long-term monitoring of the bridge with the structural health monitoring community in order to assess the current progress on damage detection and identification methods with a full-scale example. The data set includes vibration data before and after the bridge was damaged, so they are useful for testing new approaches for damage detection. In the first part of the paper, the Bayesian neural network model is discussed; then in the second part, a Bayesian neural network procedure for damage detection has been tested. The proposed method is able to detect anomalies on the behaviour of the structure, which can be related to the presence of damage. In order to obtain a confirmation of the obtained results, in the last part of the paper, they are compared with those obtained by using a traditional approach for vibration-based structural identification. 相似文献
7.
海底隧道结构健康监测设计研究 总被引:1,自引:1,他引:1
由于海底隧道工程环境的特殊性与复杂性,因此为保证海底隧道运营安全,必须对海底隧道进行长期的结构健康监测,以此了解隧道结构在复杂环境中的受力变化状况,从而及时了解隧道结构损伤位置及损伤程度,进而对结构安全状况做出评估并加以有效处理。在对隧道结构健康监测现状进行总结后,针对海底隧道工程特点,结合在建的厦门翔安海底隧道工程,通过必要的数值模拟计算,首先确定出该隧道的监测内容及重点监测部位,随后结合工程实际情况确定监测断面位置、监测项目及监测仪器的选择、监测点布置等内容。同时,研究结果表明:(1) 不良地质段隧道结构安全监测,除对该位置隧道结构进行重点监测外,还应当在邻近较好地质条件处设立辅助监测断面,便于分析不良地质条件对隧道结构的影响作用;(2) 海底隧道结构的渗漏情况可通过监测其重点部位,如拱部的衬砌开裂情况,并配合相应位置的衬砌结构水压变化情况而间接获得。研究结果将对我国在建或拟建的海底隧道结构健康监测起到一定的指导作用。 相似文献
8.
本文探讨了大跨桥梁索塔有限元模型在传感器振动测点布置方面的应用,首先对索塔有限元模型进行模态分析,采用以MAC矩阵的非对角元素为目标函数,通过增加或减少测点自由度使MAC矩阵的非对角元素趋于最小来确定索塔环境振动测点位置的最优布置。然后,运用试验室斜拉桥缩尺模型索塔不同布点方案的测试结果来验证索塔振动测点布置的有效性。研究结果表明:由缩尺模型桥的索塔不同布点方案测得的试验数据得出的测点布置和有限元计算得出的测点布置结果是一致的,因此,从模型试验的角度验证了根据有限元分析结果得出的索塔环境振动测点布置是有效的。 相似文献
9.
Shanghai Tower is the tallest building in China with a height of 632 m. This study aims to investigate the wind characteristics and its impact on Shanghai Tower so as to provide useful information for the wind‐resistant design of 600 m+ super‐tall buildings. By analyzing the data of wind speed during the occurrence of DeHong in June 2017, the relationship between turbulence intensity and mean wind speed is verified, and the correlation between gust factor and turbulence intensity is confirmed. Apart from that, it is also found that the von Karman spectrum fits well with the measured fluctuating wind speed spectrum. In addition, the 83rd and 117th acceleration data are analyzed to obtain the natural frequency by peak‐picking, frequency domain decomposition, stochastic subspace identification, and fast Bayesian fast Fourier transform methods. The amplitude‐dependence dynamic parameters of Shanghai Tower on the basis of the field measurements are studied as well. Finally, the wind‐induced vibration is investigated based on the acceleration data and wind speed data, which verifies that the responses along two main axes having a similar amplitude under wind effects. The occurrence of DeHong demonstrates that a gale equivalent to a typhoon may occur in urban areas without any urban warning. 相似文献
10.
Ayaho MIYAMOTO Risto KIVILUOMA Akito YABE 《Frontiers of Structural and Civil Engineering》2019,13(3):569
It is becoming an important social problem to make maintenance and rehabilitation of existing short and medium span(10-20 m) bridges because there are a huge amount of short and medium span bridges in service in the world. The kernel of such bridge management is to develop a method of safety(condition) assessment on items which include remaining life and load carrying capacity. Bridge health monitoring using information technology and sensors is capable of providing more accurate knowledge of bridge performance than traditional strategies. The aim of this paper is to introduce a state-of-the-art on not only a rational bridge health monitoring system incorporating with the information and communication technologies for lifetime management of existing short and medium span bridges but also a continuous data collecting system designed for bridge health monitoring of mainly short and medium span bridges. In this paper, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, mainly two advanced structural health monitoring systems are described to review and analyse the potential of utilizing the long term health monitoring in safety assessment and management issues for short and medium span bridge. The first is a special designed mobile in-situ loading device(vehicle) for short and medium span road bridges to assess the structural safety(performance) and derive optimal strategies for maintenance using reliability based method. The second is a long term health monitoring method by using the public buses as part of a public transit system (called bus monitoring system) to be applied mainly to short and medium span bridges, along with safety indices, namely, “characteristic deflection” which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. 相似文献
11.
Being able to significantly reduce system installation time and cost, wireless sensing technology has attracted much interest in the structural health monitoring (SHM) community. This paper reports the field application of a wireless sensing system on a 4-span highway bridge located in Wayne, New Jersey in the US. Bridge vibration due to traffic and ambient excitation is measured. To enhance the signal-to-noise ratio, a low-noise high-gain signal conditioning module is developed for the wireless sensing system. Nineteen wireless and nineteen cabled accelerometers are first installed along the sidewalk of two neighboring bridge spans. The performance of the wireless sensing system is compared with the high-precision cabled sensing system. In the next series of testing, 16 wireless accelerometers are installed under the deck of another bridge span, forming a 4 × 4 array. Operating deflection analysis is successfully conducted using the wireless measurement of traffic and ambient vibrations. 相似文献
12.
为了分析地铁隧道健康监测中各个指标之间的相互演化作用关系,提出了一种对监测数据进行分析的数据挖掘思路,将傅里叶幅值灵敏度检验扩展法(EFAST)应用于各项指标的全局敏感性分析中。依据现行隧道安全评价规范,建立反映隧道安全状态的指标体系;通过基于粒子群优化的最小二乘法支持向量机(PSO-LSSVM),模拟构建了各安全指标函数拟合模型,用以描述隧道各安全指标之间相互作用关系;在此基础上,采用EFAST对该模型的指标进行了全局敏感性分析。结果发现,对隧道安全性影响较大的敏感因素有管片接缝张开宽度、管片接缝接触应力和隧道沉降值;另外,还分析了不同的目标参数、不同的参数取值范围、不同的输入参数的分布形式对参数敏感度值的影响,从不同的角度揭示了盾构地铁隧道中参数的相互作用机理的演化规律。 相似文献
13.
大跨桥梁索塔有限元模型修正 总被引:3,自引:1,他引:3
首先采用不同的方法分别建立了大跨桥梁索塔的精细有限元模型和简化模型,运用环境振动实测结果对简化有限元模型进行了修正,并和精细模型计算结果相比较;研究结果表明:严格按照设计图纸建立的精细有限元模型计算得到的动力特性与索塔现场环境振动实测值之间的误差较小,而未经修正的简化模型误差较大,由此说明:大跨桥梁在有限元建模时应尽可能详细地反映结构的几何与材料特性,在此前提下,对于设计资料全面的桥梁结构,建立有限元模型时就只需要修正那些无法用数学和物理方法模拟的不确定因素。对于缺乏实测信息的在建桥梁工程,则可以应用精细有限元模型的计算结果暂时代替实测结果对简化的有限元模型进行修正。 相似文献
14.
Seismic response of a 40‐storey buckling‐restrained braced frame designed for the Los Angeles region
Pierson Jones Farzin Zareian 《The Structural Design of Tall and Special Buildings》2013,22(3):291-299
This study utilized nonlinear response history analysis to compare the seismic demand on three variations of a 40‐storey buckling‐restrained braced frame designed for high seismic hazard in the Los Angeles region. The three designs were referred to as a ‘code‐based design’, based on the 2006 International Building Code, a ‘performance‐based design’, based on criteria published by the Los Angeles Tall Building Design Council (LATBSDC) and a ‘performance‐based design plus’, based on newly developed criteria from The Pacific Earthquake Engineering Research Center (PEER). The response history analysis utilized spectrum‐matched ground motions as well as simulated ground motions for the Puente Hills fault. The spectrum‐matched motions were selected from the Next Generation Attenuation of Ground Motions (NGA) database, which is largely composed of recorded motions and scaled to five hazard levels. The simulated ground motions were broadband signals generated from a moment magnitude (Mw) 7.15 scenario rupture of the Puente Hills fault for two near fault regions and exhibit long period energy content that significantly exceeds the uniform hazard spectrum. Structural performance was assessed in terms of exceedance of a safe inter‐storey drift ratio (IDR). It was seen that the simulated ground motions impose higher IDR demands on the structures than the spectrum‐matched NGA ground motions. Furthermore, the number of instances of exceedance of a safe IDR, considered for this study as IDR = 0.03, is substantially higher for the simulated ground motions, pointing to the importance of considering such motions in the collapse prevention of tall buildings on a site‐specific basis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
Wind tunnel test and field measurement study of wind effects on a 600‐m‐high super‐tall building 下载免费PDF全文
Ping An Finance Center with a height of 600 m and 118 storeys, located in Shenzhen, is currently the second tallest building in China. This paper presents a comprehensive study of wind effects on the supertall building through wind tunnel testing and field measurement. The wind‐induced loads and pressures on the skyscraper were measured by high‐frequency force balance technique and synchronous multipressure sensing system, respectively. In the wind tunnel study, a whole range of characteristic properties, including mean and r.m.s force coefficients, power spectral densities, coherences, correlations, and phase‐plane trajectories, wind‐induced displacement, and acceleration responses were presented and discussed. In addition, a field measurement study of the dynamic responses of Ping An Finance Center was conducted during a tropical cyclone, which aimed to verify the design assumptions and further the understanding of the dynamic properties and performance of the 600‐m‐high supertall building, including natural frequencies, damping ratios, and wind‐induced structural responses. Then, the serviceability of the skyscraper is assessed on the basis of the experimental results and field measurements. The outcomes of this combined model test and field measurement study are expected to be useful for the wind‐resistant design of future supertall buildings. 相似文献
16.
A structure must meet many performance requirements to survive an earthquake. For a super high‐rise structure, the dominant control performance metric is stiffness when considering earthquake resistance because the lateral displacement of the structure often does not meet the requirements of the code even if the structure meets strength requirements. For moderate and major earthquakes, stiffness and strength play a leading role jointly. Viscous damper (VD) and buckling restraint brace (BRB) are damping devices that are commonly used in modern engineering. The efficiencies of these devices are different for different situations, and combining them can yield improved structural vibration mitigation. In this study, the performances of VD and BRB are summarized. A kind of virtual VD model with an additional damping ratio is proposed on the basis of which a VD priority placement analysis method is developed, and an optimal design is proposed. A detailed analysis of various stress states of a BRB is also performed, and a BRB arrangement method based on brace stress level analysis is proposed. The two kinds of vibration damping equipment are combined in the structure, and a practical design method for a hybrid vibration damping system is proposed. The accuracy of the proposed method is verified by considering a 10‐story plane frame. Finally, a hybrid vibration mitigation design for different objective damping ratios is performed for a super tall building project, and the design results are compared. The analysis results show that a VD can effectively increase structural damping and reduce the seismic response of the structure. A BRB is used to replace supports that experience high stress and reduce their section size, thereby reducing costs. Therefore, the proposed hybrid vibration damping structure is cost effective while providing good energy dissipation and is thus promising for engineering applications. 相似文献
17.
Muhammad Wasim Raja Rizwan Hussain 《The Structural Design of Tall and Special Buildings》2013,22(12):927-940
Concrete is generally fire resistant. A fire in a concrete structure rarely results in a serious damage as to require substantial demolition. But, loss of the utility of a building could result in serious financial consequences for the owner, which calls for immediate reinstatement. To work out proper and efficient repair strategy, however, would require a thorough investigation of the effect of fire on the structural properties of the concrete and steel; the significance which any permanent change in material characteristics may have on the future structural performance of the member; the feasibility of repairs to compensate of any unacceptable reduction in structural performance, durability, and so on; and the influence which fire exposure of individual member may have on the performance of the entire structure. These all said tasks are dependent on the complete analysis of the fire‐damaged building. Without it, no repair works estimation, extent of repair and kind of repair can be carried out for the fire‐damaged buildings. Therefore, the impeccable analysis and design is of utmost importance for repair of such buildings after preliminary investigation of the extent of fire damages to the concrete structural members. This forms the basis of this research study, which aims at detailed analysis and design of the actual existing high‐rise fire‐damaged buildings for fire retrofitting and assessment of fire damages by non‐destructive techniques. Fire damages in buildings due to explosion, accidents or by some other reasons cause severe structural damages. The structural integrity of existing buildings is now a burning issue. Analytical, theoretical and design‐cum‐construction techniques are constantly being reviewed by government agencies and engineering consultants. Therefore, researchers are delving into this matter to find the best retrofitting techniques for fire‐damaged buildings. This paper is an outcome of such detailed research studies. It covers the actual case study of existing buildings, review of existing knowledge for fire damages and their mitigation and protective design technologies, and analytical and computational techniques, which have limited research data. In this study, Extended 3D Analysis of Building Systems (ETABS) is used as software for fire retrofitting analysis, and UBC‐97 is used as a code for the fire analysis and design. The ETABS building model is verified by manual calculations as well. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Design and compilation of specifications for a modular‐prefabricated high‐rise steel frame structure with diagonal braces. Part I: Integral structural design 下载免费PDF全文
Xuechun Liu Xiaojun Zhou Ailin Zhang Chen Tian Xun Zhang Yongqiang Tan 《The Structural Design of Tall and Special Buildings》2018,27(2)
Prefabricated steel structures have certain obvious advantages, that is, rapid construction, industrial production, and environmental protection. Although prefabricated structures have been applied in a number of countries in the world, in most cases, these structures are suitable only for low‐rise buildings, and their applications in high‐rise buildings are nota\bly rare. This paper proposes a new type of prefabricated steel structure called the modular‐prefabricated high‐rise steel frame structure with diagonal braces. Based on the T30 building, which is a hotel building with 30 storeys above the ground, the mechanical properties, failure mode, failure mechanism, and elastic–plastic development laws of the structure were studied via elastic and elastic–plastic design and analyses under various load cases and combinations. The analysis of the internal force and displacement response with frequent earthquakes was performed using the response spectrum and elastic time‐history methods, and an analysis under rare earthquakes is performed via static elastic–plastic pushover analysis. This paper summarizes the elastic and elastic–plastic structural design methods and process. This study provides important references for the design of this kind of modular‐prefabricated high‐rise steel structure, and the design method has been compiled into a design specification named Technical Specifications for Prefabricated Steel Frame Structure with Diagonal Bracing Joints. 相似文献
19.
Wind‐induced inter‐story drift analysis and equivalent static wind load for multiple targets of tall buildings 下载免费PDF全文
J. Y. Fu Q. X. Zheng J. R. Wu Y. Q. Huang 《The Structural Design of Tall and Special Buildings》2016,25(6):297-321
In super high‐rise buildings with varying story heights, the wind‐induced inter‐story drifts might violate the specified limit. However, these effects have seldom been concerned in wind‐induced response analysis. The theory and application of equivalent static wind load (ESWL) for wind‐induced inter‐story drifts of super high‐rise buildings were studied in this paper. A spectral decomposition method suitable for multi‐point excitation problems was firstly proposed. The formula of ESWL targeting for largest inter‐story drift was derived. For more reasonable structural design, the ESWL for multiple targets including displacement atop of building and inter‐story drifts at all story levels is put forward, in which the dominant modal inertial forces are adopted as the based load vectors. The presented methods were finally verified by its application for the wind‐induced response analysis for a tallest super tall building in Guangzhou. The researched results showed that the proposed spectral decomposition method not only has the same precision as the complete quadratic combination method but also possesses higher computation efficiency. The ESWL for multiple targets produces the same static responses for all the specified wind‐induced response, so it is much more rational for wind‐resistant structural design. Meanwhile, it is more reasonable to select the wind‐induced responses in the same direction simultaneously as the targeted values for obtaining the required ESWLs; however, the ESWL targeting for the wind‐induced responses in all degrees of freedom would generate more queer and unrealistic ESWLs distribution. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献