首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of a single set of outriggers equipped with oil viscous dampers increases the damping ratio of tall buildings in about 6–10%, depending on the loading conditions. However, could this ratio be further increased by the addition of another set of outriggers? Should this additional set include dampers too? To answer these questions, several double damped outrigger configurations for tall buildings are investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). Using free vibration, double outrigger configurations increasing damping up to a ratio equal to the single‐based optimal are identified. Next, selected configurations are subjected to several levels of eight ground motions to compare their capability for avoiding damage under critical excitations. Last, a simplified economic analysis highlights the advantages of each optimal configuration in terms of cost savings. The results show that, within the boundaries of this study, combining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is more effective in reducing hysteretic energy ratios and economically viable if compared with a single damped outrigger solution. Moreover, double damped outrigger configurations for tall buildings exhibit broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture.  相似文献   

2.
The damped outrigger system emerged as an improvement of the conventional outriggers with the aim to provide supplemental damping and to contribute to the vibration control in super tall buildings where this system is usually applied. In addition to viscous dampers (VDs), buckling‐restrained braces (BRBs) have also been employed as energy dissipating members in outriggers. Nevertheless, the combined use of outriggers with VDs and BRBs in the same structure has not yet been studied. Such combination can contribute to achieve an effective multiperformance design of super tall buildings. This paper presents a study whose main objective was to determine the optimal vertical combination of two types of energy dissipation outriggers to control the seismic responses of a 9‐zone super tall model structure. Outriggers with VDs (OVDs) and outriggers with BRBs (OBRBs) were placed at the different zones of the structure considering all the possible combinations and in configurations of up to four outriggers. The effects of these combinations on the seismic performance of the structure were studied through parametric analysis and optimization methods. This form of the outrigger system is defined in this paper as combined energy dissipation outrigger system. The results indicate that when two energy dissipation outriggers are used, the combination of OBRB plus OVD shows superior seismic performance compared with other double‐outrigger configurations. In addition, the results show that the locations of OVDs and OBRBs play an important role in the structure behavior; it was found that it is more beneficial to place OBRBs above OVDs.  相似文献   

3.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
在框架-核心筒结构体系中,加强层可显著提高结构抗侧刚度、减小结构侧移,但会带来结构刚度、内力突变等不利影响。以某超高层建筑为工程背景,研究了黏滞阻尼器在伸臂桁架体系中的应用及在多遇地震和罕遇地震作用下的减震效果,研究了设置黏滞阻尼器的环带桁架在超高层建筑中的较优位置和减震效率。结果表明:黏滞阻尼器在伸臂桁架结构中的设置可以减小核心筒剪力墙的塑性损伤,减小结构的动力响应;设置黏滞阻尼器的环带桁架宜布置在层间相对速度大的位置,随超高层结构高度增加,阻尼器的减震效率降低。通过对伸臂桁架与外框柱、核心筒连接节点的设计及构造的分析,提出了连接节点的设计建议。  相似文献   

5.
为提高黏滞阻尼伸臂桁架在地震作用下的耗能效率,设计了一种带位移放大装置的黏滞阻尼伸臂桁架。对分别设置传统型和位移放大型黏滞阻尼伸臂桁架的超高层结构进行有限元分析,对比了结构的地震响应及阻尼器的工作状态。通过动力荷载试验,考察两种黏滞阻尼伸臂桁架的滞回性能,对比阻尼器的位移及耗能,研究位移放大系数的变化规律,分析伸臂桁架刚度对黏滞阻尼伸臂桁架工作效率的影响。结果表明:相比传统型黏滞阻尼伸臂桁架,采用位移放大型黏滞阻尼伸臂桁架可将阻尼器的耗能效率提高至原来的1.5~1.8倍,使结构获得更好的减震效果;位移放大型黏滞阻尼伸臂桁架滞回曲线光滑、对称、饱满,具有良好的工作性能,且能有效放大阻尼器的工作位移并增大耗能;提出了黏滞阻尼伸臂桁架的位移放大系数的计算式,计算值与试验值吻合较好;为保证黏滞阻尼伸臂桁架的工作效率,建议伸臂桁架的刚度比取值不小于9。  相似文献   

6.
This paper presents a general solution for performance evaluation of a tall building with multiple damped and undamped outriggers. First, general rotational stiffness (GRS) is proposed to model an outrigger that consists of the stiffness of perimeter columns and an outrigger connection and the damping of dampers in an outrigger. By utilizing the dynamic stiffness method, the GRS can be represented by complex stiffness in an outrigger element. To analyze the dynamic characteristics of a tall building with multiple outriggers, a dynamic transcendental equation is obtained from the combination of the GRS and dynamic stiffness method. The structural responses can be calculated through the Fourier transform based on this equation. Moreover, the GRS can also be blended into a finite element (FE) model to generate an augmented state‐space equation for the analysis of the dynamic characteristics and structural responses. Applications to various outriggers are illustrated. In the numerical analysis, good agreements are found between the GRS and the FE that validates the proposed method, and the performances of various outrigger systems are evaluated parametrically. As the results of a tall building with multiple damped or undamped outriggers, the proposed method is capable of providing an optimally parametric design with respect to the position of outriggers, damping, and core‐to‐column and core‐to‐outrigger stiffness ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
为研究阻尼器在结构中的优化布置及其减震效果,以某5层医技楼为例,将46个消能支撑体系逐层渐变地安装在原结构上,采用弹性时程分析方法对建筑模型进行计算.通过对减震与非减震结构层间位移角、层间剪力及结构底部剪力的对比,对阻尼器典型滞回曲线的分析得出附加的粘滞阻尼器在地震下拥有饱满的滞回曲线,能够充分发挥减震耗能作用.工程主...  相似文献   

8.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

9.
中国国际丝路中心超高层建筑总高度498 m,位于陕西省西安市,抗震设防烈度8度,该结构的侧向变形和承载力均由地震作用控制.为解决结构侧向刚度不足的问题,设置了伸臂桁架加强层,然而传统伸臂桁架往往会造成结构刚度和承载力突变等问题.为此,采用基于刚性伸臂和黏滞阻尼伸臂的组合伸臂桁架技术,研究刚性伸臂桁架和黏滞阻尼伸臂桁架在...  相似文献   

10.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

11.
Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core-outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60-story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core-to-column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy-equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0 . 6 H to 0 . 9 H, where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind-induced floor accelerations, provided the parameters are chosen appropriately.  相似文献   

12.
The use of energy dissipaters for creation of earthquake‐resilient buildings has been paid more and more attention in recent years, and some newly developed structural fuses or dampers have been proposed to be employed in rocking and seesaw buildings. In this study, a new type of yielding‐based dampers, called curved‐yielding‐plates energy dissipater (CYPED), is introduced. CYPEDs are installed at the bottom of rocking or seesaw building's circumferential columns at the lowest story and have hysteretic behavior in their deformation occurring in vertical direction. The initial curvature of the yielding plates prevents them from buckling and gives the device a smooth force–deformation behavior. First, by performing a set of cyclic tests on three specimens of CYPED, their hysteretic force–displacement behavior was investigated. Then, to show the efficiency of this energy dissipating device in reducing the seismic response of buildings, they were employed numerically as multilinear plastic springs in the computer models of a sample seesaw steel building, and a series of nonlinear time history analysis (NLTHA) were performed on both seesaw building and its conventional counterpart. Results of NLTHA show that the proposed seesaw structural system equipped with appropriate CYPEDs not only gives the building a longer natural period, leading to lower seismic demand, but also leads to remarkable energy dissipation capacity in the building structure at base level and, therefore, keeping the seismic drifts in elastic range in all stories of the building. In this way, the building structure does not need any major repair work, even after a large earthquake, while the conventional building suffers from heavy damage and is not usable after the earthquake.  相似文献   

13.
The optimum designs of multi‐outriggers in tall building structures are presented and discussed in this paper, through the analysis of structural performance of outrigger‐braced frame‐core structures. The influences of the locations of outriggers and the variations of structural element stiffness on the base moment in core, top drift and fundamental vibration period of such tall building structures are analysed in detail. A non‐linear optimum design procedure for reducing the base moment in the core is presented based on the penalty function method. The computer programs are developed on the basis of the proposed methods for analysing the behaviour and optimum design of multi‐outrigger structures. A series of figures presented in this paper can be used for the design purposes of outrigger‐braced tall building structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with the statistical effects of an outrigger system on a cantilever beam under seismic excitation. The nonstationary random approach is employed to simulate seismic events. The Timoshenko beam approach is used to model the frame‐core tube linked at a point of its length by the damped outriggers, therefore are connected vertically two magnetorheological damper devices. The peak root‐mean‐square values of displacement responses is employed as a best measure effective to specify the optimal locations of outriggers according to different vibration modes. To evaluate the performance of the control system, the control algorithm based on Lyapunov stability theory is adopted to seek the input voltage leading to the reduction of vibration.  相似文献   

15.
以一栋超高层办公楼为例,介绍了工程结构的抗震性能目标及耗能装置耗能目标,将可恢复功能防震结构的概念从理论应用到实际工程中。在传统抗震结构布置的基础上,根据结构受力特点布置了BRB、软钢连梁、伸臂阻尼及阻尼墙等耗能装置,并进行了多遇地震作用下的弹性分析和罕遇地震、极罕遇地震作用下的弹塑性分析。多遇地震作用下的弹性分析结果表明,结构主要指标均满足规范要求;罕遇地震作用下的弹塑性分析结果表明,可更换构件及黏滞阻尼构件充分耗能,能够有效地控制结构的残余层间位移角及结构的损伤,结构整体具有良好的震后可恢复性能;极罕遇地震作用下的弹塑性分析结果表明,结构可达到“不倒”的性能目标。  相似文献   

16.
以一栋超高层办公楼为例,介绍了工程结构的抗震性能目标及耗能装置耗能目标,将可恢复功能防震结构的概念从理论应用到实际工程中。在传统抗震结构布置的基础上,根据结构受力特点布置了BRB、软钢连梁、伸臂阻尼及阻尼墙等耗能装置,并进行了多遇地震作用下的弹性分析和罕遇地震、极罕遇地震作用下的弹塑性分析。多遇地震作用下的弹性分析结果表明,结构主要指标均满足规范要求;罕遇地震作用下的弹塑性分析结果表明,可更换构件及黏滞阻尼构件充分耗能,能够有效地控制结构的残余层间位移角及结构的损伤,结构整体具有良好的震后可恢复性能;极罕遇地震作用下的弹塑性分析结果表明,结构可达到“不倒”的性能目标。  相似文献   

17.
This study concerns the behaviour of steel frames protected by different anti‐seismic devices (dampers). Typical hysteretic and viscous dampers are arranged in three steel moment‐resisting frames (MRFs) having different dynamical features but are designed to accomplish determined performance objectives. The proposed devices are selected following an iterative procedure based on the use of a suitable damage functional, which has been applied to control the behaviour of the protected structures under a specific seismic record. The outcomes obtained by implementing incremental dynamic analyses, carried out on the basis of seven historical records characterized by different features, allow to analyse the improvement of the structural performance due to the considered dampers and, therefore, to provide design information about their employment. The comparison of results is carried out taking into account the dampers capacity to protect the structures from damage, the inter‐storey drifts, the residual deformations and the possible amplification effects. In conclusion, the equivalent behaviour factors for each damper type are given, with the aim of providing useful design parameters for the implementation of simplified conventional linear analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
软钢阻尼器的优化配置方法探讨   总被引:2,自引:1,他引:1  
从理论上探讨了软钢阻尼器发挥最佳减震效果时结构应具备的条件。首先基于等效粘滞阻尼比的定义,推导了软钢阻尼器结构等效粘滞阻尼比的表达式,据此,进一步确定了结构等效粘滞阻尼比取最大值时的阻尼装置受剪承载力分配率,将其定义为最优分配率,从而明确了使软钢阻尼器的耗能量达到最大时软钢阻尼器结构所应具备的条件。  相似文献   

19.
Fragility curves development in structures has always been a focus of research interest among structural and earthquake engineers for which the maximum story drift is usually considered as the engineering demand parameter (EDP) known as the conventional approach. This paper aims at calculating the fragility curves of a tall building with outrigger braced system by considering the plastic strain energy as the EDP and compare it with the conventional approach. In addition, the effect of optimizing the position of outriggers on the exceedance probability of the structure under near- and far-fault seismic loadings is investigated in this paper. Fragility curves of this structure in four performance levels including immediate occupancy (IO), life safety (LS), collapse prevention (CP), and instability is extracted based on the conventional method. The fragility curves for the aforementioned performance levels are also extracted based on the plastic strain energy and compared with the conventional approach. The results have demonstrated that optimizing the location of the bracing system would lower the exceedance probability of the structure. Moreover, the exceedance probability of the investigated building with outrigger braced system under far-fault records in various levels is more than that of near-fault records. It is also concluded that the conventional approach would lead to more conservative results compared with the energy approach.  相似文献   

20.
以某超高层建筑为例,对比分析了加强层结构和带粘滞阻尼器的消能减震结构的地震时程反应,结果表明:消能减震结构的位移反应明显小于加强层结构,在地震作用下,消能减震结构能有效地减小结构的基底剪力,粘滞阻尼器消耗了大量输入到结构中的能量,有效地保护了主体结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号