首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The optimum designs of multi‐outriggers in tall building structures are presented and discussed in this paper, through the analysis of structural performance of outrigger‐braced frame‐core structures. The influences of the locations of outriggers and the variations of structural element stiffness on the base moment in core, top drift and fundamental vibration period of such tall building structures are analysed in detail. A non‐linear optimum design procedure for reducing the base moment in the core is presented based on the penalty function method. The computer programs are developed on the basis of the proposed methods for analysing the behaviour and optimum design of multi‐outrigger structures. A series of figures presented in this paper can be used for the design purposes of outrigger‐braced tall building structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A graphical method of analysis is presented for preliminary design of outrigger truss‐braced high‐rise shear wall structures with non‐fixed foundation conditions subject to horizontal loading. The method requires the calculation of six structural parameters: bending stiffness for the shear wall, bending and racking shear stiffnesses for the outrigger, an overall bending stiffness contribution from the exterior columns, and rotational stiffnesses for the shear wall and column foundations. The method of analysis employs a simple procedure for obtaining the optimum location of the outrigger up the height of the structure and a rapid assessment of the influence of the individual structural elements on the lateral deflections and bending moments of the high‐rise structure. It is concluded that all six stiffnesses should be included in the preliminary analysis of a proposed tall building structure as the optimum location of the outrigger as well as the reductions in horizontal deformations and internal forces in the structure can be significantly influenced by all the structural components. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The damped outrigger system emerged as an improvement of the conventional outriggers with the aim to provide supplemental damping and to contribute to the vibration control in super tall buildings where this system is usually applied. In addition to viscous dampers (VDs), buckling‐restrained braces (BRBs) have also been employed as energy dissipating members in outriggers. Nevertheless, the combined use of outriggers with VDs and BRBs in the same structure has not yet been studied. Such combination can contribute to achieve an effective multiperformance design of super tall buildings. This paper presents a study whose main objective was to determine the optimal vertical combination of two types of energy dissipation outriggers to control the seismic responses of a 9‐zone super tall model structure. Outriggers with VDs (OVDs) and outriggers with BRBs (OBRBs) were placed at the different zones of the structure considering all the possible combinations and in configurations of up to four outriggers. The effects of these combinations on the seismic performance of the structure were studied through parametric analysis and optimization methods. This form of the outrigger system is defined in this paper as combined energy dissipation outrigger system. The results indicate that when two energy dissipation outriggers are used, the combination of OBRB plus OVD shows superior seismic performance compared with other double‐outrigger configurations. In addition, the results show that the locations of OVDs and OBRBs play an important role in the structure behavior; it was found that it is more beneficial to place OBRBs above OVDs.  相似文献   

4.
An outrigger system is an effective structural scheme that is commonly used in high‐rise construction to increase the stiffness of concrete core walls and to reduce the moment demand within the walls. Despite the on‐going use of outrigger systems around the world, a formal seismic design procedure is yet available. This paper presents an equivalent energy design procedure (EEDP) to design outrigger systems for seismic applications. Three prototype outrigger‐wall buildings of various heights are designed for Vancouver, Canada. Detailed finite element models are developed to assess the seismic performance of the prototype buildings and to assess the safety using the FEMA P695 methodology. The result shows that EEDP is an efficient method to design outrigger systems which results in structures that can achieve sufficient margin of safety against collapse and satisfy multiple performance objectives at different seismic hazard levels.  相似文献   

5.
Fragility curves development in structures has always been a focus of research interest among structural and earthquake engineers for which the maximum story drift is usually considered as the engineering demand parameter (EDP) known as the conventional approach. This paper aims at calculating the fragility curves of a tall building with outrigger braced system by considering the plastic strain energy as the EDP and compare it with the conventional approach. In addition, the effect of optimizing the position of outriggers on the exceedance probability of the structure under near- and far-fault seismic loadings is investigated in this paper. Fragility curves of this structure in four performance levels including immediate occupancy (IO), life safety (LS), collapse prevention (CP), and instability is extracted based on the conventional method. The fragility curves for the aforementioned performance levels are also extracted based on the plastic strain energy and compared with the conventional approach. The results have demonstrated that optimizing the location of the bracing system would lower the exceedance probability of the structure. Moreover, the exceedance probability of the investigated building with outrigger braced system under far-fault records in various levels is more than that of near-fault records. It is also concluded that the conventional approach would lead to more conservative results compared with the energy approach.  相似文献   

6.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

7.
In this paper, the analysis of optimal locations of framed‐tube structures with outriggers is conducted with the uniform and nonuniform core and peripheral columns using genetic algorithm, aiming to minimize the interstory drift. Also, comparison and difference of the results between the uniform and nonuniform structures are carried out and discussed. Besides, several parameters which influence the behavior of the structure are identified and analyzed, such as different objective functions, segments of outriggers, thickness of core wall, stiffness of outriggers, and grade of concrete strength. In addition, a Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 260‐m high‐rise building as a target building, the optimal locations of one to two sets of outriggers subjected to three kinds of horizontal loadings (uniform, parabolic, and triangular) are obtained and can be utilized for the structural preliminary design of tall buildings.  相似文献   

8.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

9.
为提高黏滞阻尼伸臂桁架在地震作用下的耗能效率,设计了一种带位移放大装置的黏滞阻尼伸臂桁架。对分别设置传统型和位移放大型黏滞阻尼伸臂桁架的超高层结构进行有限元分析,对比了结构的地震响应及阻尼器的工作状态。通过动力荷载试验,考察两种黏滞阻尼伸臂桁架的滞回性能,对比阻尼器的位移及耗能,研究位移放大系数的变化规律,分析伸臂桁架刚度对黏滞阻尼伸臂桁架工作效率的影响。结果表明:相比传统型黏滞阻尼伸臂桁架,采用位移放大型黏滞阻尼伸臂桁架可将阻尼器的耗能效率提高至原来的1.5~1.8倍,使结构获得更好的减震效果;位移放大型黏滞阻尼伸臂桁架滞回曲线光滑、对称、饱满,具有良好的工作性能,且能有效放大阻尼器的工作位移并增大耗能;提出了黏滞阻尼伸臂桁架的位移放大系数的计算式,计算值与试验值吻合较好;为保证黏滞阻尼伸臂桁架的工作效率,建议伸臂桁架的刚度比取值不小于9。  相似文献   

10.
The use of a single set of outriggers equipped with oil viscous dampers increases the damping ratio of tall buildings in about 6–10%, depending on the loading conditions. However, could this ratio be further increased by the addition of another set of outriggers? Should this additional set include dampers too? To answer these questions, several double damped outrigger configurations for tall buildings are investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). Using free vibration, double outrigger configurations increasing damping up to a ratio equal to the single‐based optimal are identified. Next, selected configurations are subjected to several levels of eight ground motions to compare their capability for avoiding damage under critical excitations. Last, a simplified economic analysis highlights the advantages of each optimal configuration in terms of cost savings. The results show that, within the boundaries of this study, combining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is more effective in reducing hysteretic energy ratios and economically viable if compared with a single damped outrigger solution. Moreover, double damped outrigger configurations for tall buildings exhibit broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture.  相似文献   

11.
This paper presents a general solution for performance evaluation of a tall building with multiple damped and undamped outriggers. First, general rotational stiffness (GRS) is proposed to model an outrigger that consists of the stiffness of perimeter columns and an outrigger connection and the damping of dampers in an outrigger. By utilizing the dynamic stiffness method, the GRS can be represented by complex stiffness in an outrigger element. To analyze the dynamic characteristics of a tall building with multiple outriggers, a dynamic transcendental equation is obtained from the combination of the GRS and dynamic stiffness method. The structural responses can be calculated through the Fourier transform based on this equation. Moreover, the GRS can also be blended into a finite element (FE) model to generate an augmented state‐space equation for the analysis of the dynamic characteristics and structural responses. Applications to various outriggers are illustrated. In the numerical analysis, good agreements are found between the GRS and the FE that validates the proposed method, and the performances of various outrigger systems are evaluated parametrically. As the results of a tall building with multiple damped or undamped outriggers, the proposed method is capable of providing an optimally parametric design with respect to the position of outriggers, damping, and core‐to‐column and core‐to‐outrigger stiffness ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
To investigate the optimum location of the outrigger system, a metaheuristic‐based size and topology optimization of the outrigger‐braced tall buildings is carried out by various three‐dimensional structural frames with different shapes of belt trusses. By considering the elastic behavior, the whole elements of the structural models such as beams, columns, core, and trusses are optimized simultaneously in conjunction with the location of the outrigger. Furthermore, to reach more optimality, several novel types of belt truss are proposed having inclined and inverse‐inclined belt trusses with better structural and architectural features and optimum performance in comparison with the horizontal one. Different models with 25 to 40 stories having various span numbers are optimized using the genetic algorithm, and the results are compared with each other. In the modeling process, the exact wind load distribution is applied to the structure based on the ASCE7‐16 rather than the uniform or triangular ones. According to the results, the optimum cross‐sectional size and outrigger locations of different models are obtained, and it is indicated that the proposed novel belt trusses are optimal solution for the problem.  相似文献   

13.
This paper deals with the statistical effects of an outrigger system on a cantilever beam under seismic excitation. The nonstationary random approach is employed to simulate seismic events. The Timoshenko beam approach is used to model the frame‐core tube linked at a point of its length by the damped outriggers, therefore are connected vertically two magnetorheological damper devices. The peak root‐mean‐square values of displacement responses is employed as a best measure effective to specify the optimal locations of outriggers according to different vibration modes. To evaluate the performance of the control system, the control algorithm based on Lyapunov stability theory is adopted to seek the input voltage leading to the reduction of vibration.  相似文献   

14.
Certain maximum lateral displacement (LAT) and differential axial shortening (DAS) values can lead to the deterioration of the serviceability of a structure. Previous studies indicated that an outrigger system can be used to control both the DAS and the LAT in a tall building. In order to enhance the applicability of the dual‐purpose outrigger system, the amount of stress developed on the outrigger due to the reductions of the LAT and DAS should be determined. Therefore, in this study, the stresses due to the LAT and DAS were analyzed in terms of the reduction ratio of the LAT and DAS, and the absolute sum of stresses, which was the strength demand of the outrigger, was evaluated as well. To identify the parameters affecting the additional stress of the outrigger, analytic equations were proposed to predict the additional shear force acting on the outrigger due to DAS reduction. A finite‐element analysis was performed to quantitatively identify the reduction ratio of the LAT and DAS as well as the resulting stress by changing four parameters: the stiffness, location, number, and connection time of outriggers. The results demonstrated that the stress of the dual‐purpose outrigger can be minimized by adjusting the design parameters.  相似文献   

15.
In this paper, the geometric nonlinear behavior of wall‐frame tall building structures is analyzed. The governing equations of the wall‐frame systems with outrigger trusses are formulated through the continuum approach, and the whole structure is idealized as a shear‐flexural cantilever with rotational spring. The effect of shear and flexural deformation of the wall frame and outrigger trusses are considered and incorporated in the formulation of the governing equations. Geometric nonlinearity in the sense of von Karman is included in the formulation, and Newton–Raphson iterative method is employed to solve the nonlinear equations. A displacement‐based one‐dimensional nonlinear finite element model is developed. Numerical results for wall frame and mega‐column structures with outriggers are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, providing reasonably accurate results in early design stages of tall building structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The outrigger system has been widely adopted as an efficient structural lateral‐load resisting system for super‐tall buildings in recent years. Although the outrigger system has many structural advantages, it has a significant defect due to differential shortening, which cannot be neglected. Due to the shrinkage and creep of concrete, as well as the differential settlement of foundation, the shortening of the structural member is an important time‐dependent issue, which leads to additional forces in the outriggers after the lock‐in of the outriggers. As a result, it will increase the size of the structural member cross section in the design. In a real project, engineers can delay the lock‐in time of the outrigger system to release the additional forces caused by the differential shortening during the construction phase. The time‐dependent actions, such as the column shortening and the differential settlement of the foundation, were estimated. A mega frame steel structure was employed to illustrate the analysis and design of the outrigger under the time‐dependent actions. Furthermore, a simple optimal method, considering the structural stability and overall stiffness, was proposed to optimize the construction sequence of the outrigger system.  相似文献   

17.
本文根据伸臂结构的简化模型和伸臂与外框柱的变形协调条件,考虑伸臂的实际刚度,导出伸臂对核心墙的附加力矩,求得结构顶点侧移。对伸臂位置及刚度变化引起的侧移变化与内力突变进行了分析,结合工程分析结果对高层建筑加强层设计提出了一些参考意见。  相似文献   

18.
In a core‐wall structure with buckling restrained braces (BRB) outrigger, locations of the plastic hinges are influenced by the outrigger action. Therefore, the designer should consider the issue and use suitable details in the plastic hinge area. The essential questions that arise here are the plastic hinge location and the design moment demand used for design of this kind of structure. In this paper, responses of the core‐wall buildings with BRB outrigger designed by using the traditional response spectrum analysis procedure are assessed by implementing the nonlinear time history analysis. The result demonstrates that the plasticity can extend over anywhere within the core‐walls specially, at the base and above or below the outrigger levels. Formation of three plastic hinges in the core‐wall is recognized suitable for the system. To control the plasticity extension in the core‐wall, it is recommended that a new modal combination method be applied to calculate the moment strength of the three plastic hinges over the height. A capacity design concept is used to design other regions of the core‐wall where the plasticity does not extend to. The proposed procedure improves behavior of the system by restricting the plasticity extension to the predefined plastic hinge regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the progressive collapse potential of building structures with core and outrigger trusses were evaluated using nonlinear static and dynamic analyses. To this end 36‐storey analysis model structures composed of RC core walls and perimeter frames connected by outrigger trusses at the top were prepared. The static pushdown analysis of the structure with mega‐columns and outrigger trusses showed that the maximum strength reached only about 20% of the load specified in the US General Services Administration guideline when a mega‐column in the first storey was removed. According to dynamic analysis results, the vertical displacement monotonically increased until collapse as a result of buckling of some of outrigger truss members. However the structure with outrigger and belt trusses remained stable after a perimeter column was removed. The stability of the structure with mega‐columns and outrigger trusses could be achieved by redesigning it with additional belt trusses or with moment connections in interior or exterior frames. Based on the analysis results it was concluded that the dynamic amplification factor of 2.0 recommended in the guidelines provided reasonably conservative results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
水平加强层在超高层钢结构中的应用研究   总被引:10,自引:0,他引:10  
结合实际工程,深入地研究了设置水平加强层后超高层钢结构的地地震响应;通过对几种不同方案的比较,进一步研究了加强层的数量、抗弯刚度以及周边环带等对结构抗震性能的影响;最后本文提出了一种水平加强层刚度的选择方法,供工程应用参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号