首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究钢筋混凝土巨型框架结构体系的抗震性能及其地震作用损伤机理,设计制作1/25的缩尺模型,并设计加工了一套调谐质量阻尼器(TMD)装置安装在模型结构顶部,进行振动台试验,得到结构的动力特性和位移响应,并对比分析了TMD的减震效果。结果表明:当在峰值加速度为0.140g的地震波作用后(相当于原型7度多遇地震),模型结构处在弹性工作状态,在峰值加速度为0.400g的地震波作用后(相当于原型7度基本烈度),模型结构出现轻微破坏,在峰值加速度为0.880g的地震波作用后(相当于原型7度罕遇地震),模型结构出现中等破坏,该原型结构可以满足抗震设计的要求;TMD装置具有较好的减震效果。  相似文献   

2.
This paper assesses the seismic performance of a high‐rise building with steel reinforce concrete column and reinforce concrete core tube in Shanghai, China. This building has 54 floors above the ground and 4 basements, and it has two strengthened layers, which are composed of outrigger truss and belt truss. In order to validate the reliability and the safety of this structure, besides the conventional analysis, shaking table test of scale model was conducted. In the test, the maximum responses of acceleration and deformation were measured and evaluated, as well as the dynamic characteristics, crack pattern, and failure mechanism of the building. Meanwhile, elastic‐plastic time‐history analysis for prototype structure was carried out by the finite element analysis program, and the experimental data were compared with the analytical results to gain a better understanding of the seismic performance of the building. The conclusions are summarized below:

3.
通过附加和不附加颗粒调谐质量阻尼器的5层钢框架振动台试验,研究其在实际地震波以及上海人工波激励下的减震效果。通过调整不同悬挂长度(频率比)、质量比、颗粒到阻尼器壁净距等参数,分析阻尼器参数对其减震效果的影响。试验结果表明:不同地震作用下该类阻尼器均能达到较好的减震效果,其中上海人工波的减震效果最好;对于多层钢框架结构,阻尼器能够有效控制第1振型的振动,但是对于高阶振型的控制作用无法保证;当阻尼器频率与主体结构基频相同时,能够达到最优减震效果,而当二者频率不同时,依然有一定的减震效果,说明其具有一定的鲁棒性;在合适的质量比(0.66%)下,阻尼器能够达到最佳减震效果;当颗粒到容器内壁净距为1.6D~3.6D时,可使阻尼器响应最小,且减震效果较好。  相似文献   

4.
为验证8度抗震设防烈度区某522 m超高层结构的抗震性能,设计并制作了1/40缩尺结构模型,通过模拟地震振动台试验,研究结构在8度多遇、设防、罕遇地震作用下的动力特性,考察其在单向和三向地震动输入下的变形及损伤情况。此外,采用ABAQUS软件对结构进行了8度罕遇地震作用下弹塑性时程分析,考察了结构动力特性和位移反应,分析结构的损伤状态和薄弱部位,并与振动台试验结果对比。结果表明,该结构采用的巨型柱、巨型斜撑与环带桁架的外框筒和型钢-混凝土组合结构核心筒形成的双重结构抗侧力体系,具有较好的稳定性和结构效能,该结构在8度(0.3g)罕遇地震作用下未发生倒塌,能够很好地满足“小震不坏、大震不倒”的性能要求。  相似文献   

5.
新型悬吊式TMD及其在某标志塔风振控制中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
为了控制河南艺术中心标志塔的风致振动,提出了一种采用十字形万向铰轴实现多向振动控制、采用摩擦阻尼片提供附加阻尼、采用放射型弹簧提供附加刚度的新型悬吊式TMD。根据标志塔结构的动力特性,设计加工了足尺TMD,通过实验室试验对其动力性能进行了测试,并将该TMD安装在实际结构上,依据实测频率和阻尼对其参数进行了现场调整。研究表明,该TMD装置具有构造简单,稳定性和持久性好等优点。  相似文献   

6.
The asymmetrical high‐rise building investigated in this paper is composed of a 299.1‐m‐high tower and a 235.2‐m‐high tower, which are diagonally and rigidly connected by two steel truss systems with the maximum span of 65.43 m. Given the great structural irregularities and complexities, the structural seismic performance is necessary to be investigated. A shaking table test of a 1/45 scaled model is conducted in this study, by which the structural damage pattern and dynamic responses are analyzed. The results show that the connecting trusses and rigid connection joints behave well during strong seismic excitations. The damages concentrate on the connecting floors, and the whole structural damage is slight. Most of the lateral resistance components remain elastic. The structure presents high seismic resistance against strong ground motions. Subsequently, a three‐dimensional finite element model of prototype structure is established and validated by the experimental results. The analyses indicate that performance of the connecting trusses is capable of coordinating translational and torsional deformation of the two towers and making them resist lateral seismic force together even subjected to maximum considered earthquakes. And this performance is still reliable although the high torsional modes are triggered.  相似文献   

7.
高层住宅结构为满足建筑功能多样化、美观等要求,出现了底部大空间、立面大洞口等特殊效果的短肢剪力墙-筒体结构形式,对该复杂结构体系整体抗震性能的评估,需进行专门的试验研究和计算分析。本文针对具有上述结构特点的某高层结构整体模型,进行了模拟地震振动台试验和三维有限元分析,得到了结构的动力特性,以及在7度多遇、基本、罕遇烈度地震作用下的加速度反应、惯性力分布和位移反应等。结果表明,在地震作用下该结构底部墙肢中仅少数构件出现反弯点甚至不出现反弯点;除结构出屋面部分鞭梢效应明显外,其余部分均可以满足现行规范的抗震设防要求;工程设计中宜改善端部筒体以及转换大梁与筒体连接处的强度和延性。  相似文献   

8.
A mega‐frame with a vibration control substructure (MFVCS) is a tuned mass damper system that converts substructures into a tuned mass. In this study, a kind of MFVCS using lead–rubber bearings (LRBs) to connect the vibration control substructure to the mega‐frame was proposed. To investigate the damping effect of this MFVCS, a series of shaking table tests were conducted, and the seismic responses of the MFVCS were compared with those of the traditional mega‐frame structure (TMFS). The results show that the seismic responses of the MFVCS are clearly smaller than those of the TMFS; additionally, the proposed MFVCS can provide a sufficient damping effect under different ground motions. Finite element (FE) models of the TMFS and MFVCS were established and validated by experimental results. Finally, the simulation results adopting different LRB models (equivalent linear and nonlinear elements) were compared, and the results indicate that simulation results can be obtained with greater accuracy from the FE model with a nonlinear LRB model than that with a linear LRB model.  相似文献   

9.
The synchronous multipoint scanning system technique in wind tunnel tests and random vibration theory method were used to analyze the wind‐induced torsion vibration of some irregularly shaped super high‐rise buildings in downtowns. The torsion vibration modes and the spectra of torsion wind load were studied, and the proportions of mean wind torsion, inertia torsion and the mass eccentricity torsion caused by horizontal inertia forces are discussed. The following conclusions can be drawn. First, the third and fourth modes have torsion vibration shapes, and their frequencies are in the high‐energy area of the spectra of the torsion wind load; the third and fourth modes are included in the resonant component of the spectra of the top torsion angle of the building, and the third mode is dominant. Second, the torsion stiffness is weak in the high stories of the building, so the inertia torsion is dominant, whereas the torsion stiffness is strong in the low stories; the mean wind torsion is dominant. The proportion of the mass eccentricity torsion moment caused by horizontal inertia forces is small. Finally, the wind‐induced torsion moment at a 90° wind angle is the largest, whereas the torsion eccentricity is 46% of the radius of gyration and is much greater than the mass eccentricity; thus, the wind‐induced torsion should be considered. The wind‐induced torsion vibration of the building is sensitive to wind directions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

11.
Tuned mass dampers (TMDs) are employed to control the wind‐induced responses of tall buildings. In the meantime, TMD may have an impact on the correlation of wind‐induced responses and combination coefficients of equivalent static wind loads (ESWLs). First, the mass matrix and stiffness matrix were extracted in this paper in accordance with the structural analysis model of two high‐rise buildings, and on that basis, the wind‐induced vibration responses analysis model with and without TMD was established. Second, the synchronous multipoint wind tunnel test to measure the pressure was performed for two high‐rise buildings, and the time history of wind‐induced vibration responses with and without TMD was studied. Finally, the impact of TMD on the correlation of wind‐induced responses and combination coefficients of ESWLs was discussed. The results of two examples suggest that after the installation of TMD, the increase of ρxy was 2.1% to 35.0% and ρyz was 2.8% to 45.6% at all wind directions for Building 1, and the increase of ρxy was 3.9% to 17.1% and ρyz was 6.8% to 38.3% for Building 2. The combination coefficients of ESWLs of two buildings were 3% to 6% larger than that of the original structure. The conclusion of this paper can be referenced by the wind resistant design of high‐rise buildings with TMD.  相似文献   

12.
为了研究液化地基上超高层结构在地震作用下的动力特性和动力响应,设计了液化场地超高层结构模型,并对其进行振动台试验。分析了超高层结构的自振频率、阻尼比、振型、加速度响应、位移反应、结构顶层加速度响应组成和地基孔隙水压力。结果表明:随着加速度峰值的增大,结构的自振频率下降,阻尼比增大;由于结构刚度变化不大,结构振型曲线的形状变化不明显;结构的动力响应不仅与输入地震波的加速度峰值有关,还与地震波的频谱特性有关;结构顶层的加速度反应主要由结构弹塑性变形加速度分量组成,其次是基础转动引起的摆动加速度分量和平动加速度分量;当地震波加速度到达第1个峰值时,砂土层的超孔隙水压力存在负值。  相似文献   

13.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

14.
An analysis and estimation method of multibalance synchronous test is established to study the wind effect of a complex super high‐rise building with weak connection. First, the frequency domain method is applied to deduce the calculation process of the wind effect of the multitower structure on the basis of the high frequency force balance (HFFB) technique. Then, the synchronous force test of HFFB is conducted on a twin‐tower super high‐rise building connected by a bridge. The wind‐induced response and loads and the interference effect between the two towers are analyzed based on the wind tunnel test data. The displacement correlation between the towers and the relative displacement of the multitower structure are investigated. Results show that the maximum and minimum relative displacements in the along‐bridge direction are 0.26 m in the along‐wind direction and ?0.26 m in the crosswind direction, respectively. The channeling effect formed by the surrounding buildings is the main cause of the maximum cross‐bridge displacement. The influence of the correlation between the two towers can be ignored for the along‐bridge relative displacement. The results of the HFFB and high‐frequency pressure integral test agree with each other, thereby indicating the reliability and effectiveness of the proposed method.  相似文献   

15.
A compound mass damper (CMD) was put forwarded based on the joint vibration control effects of tuned liquid damper and colliding particles. A series of shaking table tests were designed in order to investigate the dynamic response of a single degree of freedom bent frame structure with or without the damper (CMD, tuned mass damper, and tuned liquid damper) under three different kinds of earthquake waves. It is shown that the vibration reduction performance of CMD is generally better than the traditional dampers no matter from peak response attenuation rate or root mean square response attenuation rate. The vibration reduction effect of traditional dampers is susceptible to the characteristics of earthquake waves, whereas CMD is effective in a broader frequency bands. Also, the vibration reduction effect of CMD is not sensitive to the amplitude of earthquake waves, which means the system has good robustness. In addition, CMD has the advantage of fast start‐up. The numerical simulation results of the CMD are obtained through certain simplifications, and are in good agreement with the experimental results, which further verifies the damping effect of the proposed damper and provides a simplified method for its engineering design.  相似文献   

16.
This paper presents an earthquake‐resistance study program of a long‐span cantilevered story building. The program consists of a shaking table test study and nonlinear seismic analysis using finite element modeling technique. A 1/30 scale model of the prototype structure was designed and manufactured and then tested via the shaking table facility. Dynamic responses of the prototype structure under different earthquake excitation loadings were simulated. Dynamic properties, acceleration, and deformation responses of the scale down model under different intensity levels of earthquake were studied. The dynamic behavior, cracking pattern, and the likely governing failure mechanism of the structure were analyzed and discussed as well. The seismic responses of the prototype building were deduced and analyzed in terms of the similitude law. Furthermore, elaborate finite element models were established, and nonlinear numerical analysis of the prototype structure was conducted. The errors in the seismic response of the structure caused by structural simplification of scale down modeling are found small, and the dynamic behavior of the structure was not altered in the earthquake excitations. This test study provides a benchmark to calibrate the finite element model and a tentative guide in seismic design of such long‐span cantilevered story buildings.  相似文献   

17.
A particle tuned mass damper system is an integration of tuned mass damper and particle damper. The damping performance of such device is investigated by an aero‐elastic wind tunnel test on a benchmark high‐rise building. The robustness of the system is studied by comparing the damping performance to that of a traditional tuned mass damper, and the results show that the damper has excellent and steady wind‐induced vibration control effects. Meanwhile, the parameters (filling ratio, mass ratio, and mass ratio of the container to particles), which have great influence on the vibration reduction performance of the system, are also analyzed, and it is found that the particles filling ratio plays the most important role in deciding the damping effects of the dampers. There exists an optimum filling ratio and mass ratios in which the damper can reach the best damping state. Proper parameter selections can greatly improve the damping performance.  相似文献   

18.
本文对不同控制策略下安装有磁流变(MR)阻尼器的模型结构进行了振动台试验和分析。文中首先介绍了经典最优控制(COC)、瞬时最优控制(IOC)和线性二次高斯最优控制(LQG)等三种控制算法,然后对一首层安装有最近设计制造的MRF-04K型的MR阻尼器的、1/3比例的三层钢框架模型,进行了在两种被动控制和三种半主动控制等不同控制策略下的振动台试验,最后对模型结构地震反应的控制效果以及不同控制策略对控制效果的影响和控制稳定性进行了分析。研究表明,安装有MRF-04K阻尼器的结构控制系统具有良好的控制效果,无论是被动控制还是半主动控制,模型结构各层相对位移峰值均减小了45%左右,其均方根值均减小了70%左右,加速度反应峰值均减小了30%左右,其均方根值均减小了75%左右,从而验证了MRF-04K阻尼器是结构控制工程应用的一种理想的控制装置;研究还表明,在三种半主动控制策略中,基于LQG算法的半主动控制仅需模型结构的加速度反应的反馈信息,比基于IOC算法和COC算法的半主动控制  相似文献   

19.
翼墙-框架结构振动台试验研究及有限元分析   总被引:2,自引:0,他引:2  
为研究翼墙-框架结构在地震作用下的抗震性能和加固效果,进行了一个缩尺比为1∶4的翼墙-框架结构模型振动台试验,得到了结构在烈度为7度的多遇、设防和罕遇地震以及8度、9度地震动作用下的动力特性、动力反应和宏观破坏模式。研究表明:翼墙根部首先受到往复拉压破坏,框架柱得到有效保护,实现了多道抗震防线的目的;梁端出现大量裂缝,基本实现了"强柱弱梁"屈服机制,而纯框架数值模型则呈现典型的柱铰破坏机制;纯框架模型的底层层间位移角显著大于上部各楼层,翼墙-框架模型各楼层的层间位移角大小基本一致,层屈服机制得到有效避免。  相似文献   

20.
风力发电塔系统TMD控制振动台试验研究   总被引:1,自引:0,他引:1  
赵斌  马飞  陈建兵 《土木工程学报》2012,(Z1):142-145,157
通过不同桨叶转速、不同地震动输入下的风力发电塔系统在TMD控制下的振动台对比试验,研究TMD对风力发电塔系统的控制效果及其影响因素;在试验的基础上,利用ANSYS软件对风力发电塔系统建模,对其在有无TMD控制下的地震反应进行有限元模拟,并与试验结果进行比较,得到与振动台试验相一致的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号