首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional coupling beams in coupled shear walls (CSWs) may be lack of required ductility or inconvenient to be fully repaired or replaceable after earthquake damage. To improve the CSW seismic performance, a type of new structural system, which is referred to as coupled shear walls with buckling‐restrained steel plates (CSW–BRSP), is proposed and thoroughly studied. In the system, a pair of individual concrete wall is coupled through buckling‐restrained steel plates instead of traditional concrete coupling beams. Based on the continuous medium method (CMM), stiffness and strength design formulas are developed for the seismic design of this system. Intensive investigations have been conducted to assess the undesirable axial forces in the buckling‐restrained steel plates induced by lateral loads. In order to facilitate the application of this system, a detailed design procedure is also explicitly stated. Finally, an example of typical high‐rise building is presented to illustrate the design procedure as well as demonstrate the excellent seismic performance of the proposed system by means of nonlinear time‐history analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The seismic response of the high‐rise reinforced concrete (RC) wall structures is really complicated as several vibration modes other than the fundamental mode normally contribute significantly to the response—commonly recognized as ‘higher mode effects’. Response spectrum analysis (RSA) procedure, which can account for higher mode effects, is usually employed to compute the seismic design demand for the high‐rise structures. Recent studies show that the inelastic seismic force demands obtained from the rigorous nonlinear response history analysis procedure are much larger than the seismic force design demands obtained from the code‐based RSA procedure for the high‐rise RC wall structures. Though, the nonlinear response history analysis procedure is widely accepted for its ability to provide the most accurate estimate of nonlinear seismic responses, the obtained responses are generally so complex that it is quite difficult for engineers to grasp the overall picture of the responses and gain some insight into them and use them to understand the cause of high seismic demands. Another important issue related to the nonlinear seismic response prediction of the high‐rise RC wall structures is the realistic and accurate numerical modeling of RC walls. In this study, a simplified but reasonably accurate procedure called the uncoupled modal response history analysis procedure is used to interpret the complex nonlinear behavior of high‐rise RC wall structures. Moreover, a finite element model based on modified compression field theory is employed for accurate numerical modeling of RC walls by incorporating the axial‐flexure‐shear interaction. This study, by making use of a better computer modeling approach and an in‐depth analysis by modal decomposition, aims to resolve some of the unanswered questions regarding realistic prediction of nonlinear seismic demands of high‐rise structures.  相似文献   

3.
The effect of shear wall configurations on seismic responses of high‐rise RC buildings is investigated in this paper using fragility analysis method. Four lower high‐rise RC buildings that have the same plan dimensions and height but are different in configurations in lateral force resisting systems, were firstly designed following the standard code procedure. To consider uncertainties in earthquake motions, 16 real ground motion pairs were selected and scaled, then applied orthogonally to the four RC building models during the Incremental Dynamic Analysis (IDA). Fragility relationships were therefore derived based on the IDA results for the three limit states including slight damage, moderate damage and collapse to show the probabilistic comparison of seismic responses among the four buildings in both x and y‐directions. It was observed that generally adding shear walls will improve buildings' seismic performance at all limit states. However, shear wall configuration also plays a significant role in seismic behavior of the lower high‐rise regular RC buildings' and internal shear walls are generally more effective than external shear walls in improving building's seismic resistance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, the issue of large inelastic seismic force demands at severe ground shakings such as maximum considered earthquake level has been highlighted in the conventionally designed high‐rise reinforced concrete core wall buildings. Uncoupled modal response history analysis was used in this study to identify the modes responsible for the large inelastic seismic force demands. The identification of dominant modes and mean elastic design spectra of seven representative ground motions for different damping ratios has led to the identification of three control measures: plastic hinges (PHs), buckling‐restrained braces (BRBs) and fluid viscous dampers (FVDs). The identified control measures were designed to suppress the dominant modes responsible for the large inelastic seismic force demands. A case‐study building was examined in detail. Comparison of the modal as well as the total responses of the case‐study building with and without the control measures shows that all the control measures were effective and able to reduce the inelastic seismic demands. A reduction of 33%, 22% and 27% in the inelastic shear demand at the base and a reduction of 60%, 22% and 26% in the inelastic moment demand at mid‐height were achieved using the PHs, BRBs and FVDs, respectively. Furthermore, a reduction of about 30–40% in the inelastic seismic deformation demands was achieved for the case of the BRBs and FVDs. The study enables us to gain insight to the complex inelastic behavior of high‐rise wall buildings with and without the control measures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Structural health monitoring system has been implemented on high‐rise buildings to provide real‐time measurement of structural responses for evaluating their serviceability, safety, and sustainability. However, because of the complex structural configuration of a high‐rise building and the limited number of sensors installed in the building, the complete evaluation of structural performance of the building in terms of the information directly recorded by a structural health monitoring system is almost impossible. This is particularly true when seismic‐induced ground motion is unknown. This paper thus proposes an integrated method that enables the optimal placement of multi‐type sensors on a high‐rise building on one hand and the reconstruction of structural responses and excitations using the information from the optimally located sensors on the other hand. The structural responses measured from multi‐type sensors are fused to estimate the full state of the building in the modal coordinates using Kalman filters, from which the structural responses at unmeasured locations and the seismic‐induced ground motion can be reconstructed. The optimal multi‐type sensor placement is simultaneously achieved by minimizing the overall estimation errors of structural responses at the locations of interest to a desired target level. A numerical study using a simplified finite element model of a high‐rise building is performed to illustrate the effectiveness and accuracy of the proposed method. The numerical results show that by using 3 types of sensors (inclinometers, Global Positioning System, and accelerometers), the proposed method offers an effective way to design a multi‐type sensor system, and the multi‐type sensors at their optimal locations can produce sufficient information on the response and excitation reconstruction.  相似文献   

6.
The relationship between the seismic performance and economics of high‐rise buildings when designed to different material strengths is investigated in this paper. To represent the modern high‐rise construction, five 60‐story reinforced concrete buildings with varying concrete strengths, ranging from 45 MPa to 110 MPa, are designed and detailed to fine accuracy keeping almost equal periods of vibration. Detailed fiber‐based simulation models are developed to assess the relative seismic performance of the reference structures using incremental dynamic analyses and fragility functions. It is concluded that a considerable saving in construction cost and gain in useable area are attained with increasing concrete strength. The safety margins of high‐strength concrete in tall structures may exceed those of normal‐strength concrete buildings, particularly at high ground motion intensity levels. The recommendations of this systematic study may help designers to arrive at cost‐effective designs for high‐rise buildings in earthquake‐prone regions without jeopardizing safety at different performance levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A simplified model is developed to estimate the seismic response of high‐rise buildings equipped with hysteresis damped outriggers. In the simplified model, the core tube is considered as a cantilever beam, and the effects of outriggers on the core tube are considered as concentrated moments. Modal decomposition method is adopted to obtain the seismic response of the simplified model. To investigate the accuracy and effectiveness of the simplified model, a high‐rise building with a height of 160 m was adopted as the example structure, and its response subjected to a ground motion was analyzed using the simplified model. A corresponding finite element model was built and analyzed by a finite element program called SAP2000 (Computers and Structures, Inc. Berkeley, California, United States). The analysis results obtained from the two models were compared. To consider the randomness of the ground motion, comparisons between the two models were further conducted using another 22 ground motions. It is found that the analysis results obtained from the simplified model agree well with those obtained from the finite element model, and the computation time used for the simplified model is almost negligible compared to that used for the finite element model. Such observations demonstrate that the simplified model is accurate and effective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
9.
When subjected to long‐period ground motions, many existing high‐rise buildings constructed on plains with soft, deep sediment layers experience severe lateral deflection, caused by the resonance between the long‐period natural frequency of the building and the long‐period ground motions, even if they are far from the epicenter. This was the case for a number of buildings in Tokyo, Nagoya, and Osaka affected by the ground motions produced by the 2011 off the Pacific coast of Tohoku earthquake in Japan. Oil‐dampers are commonly used to improve the seismic performance of existing high‐rise buildings subjected to long‐period ground motion. This paper proposes a simple but accurate analytical method of predicting the seismic performance of high‐rise buildings retrofitted with oil‐dampers installed inside and/or outside of the frames. The method extends the authors' previous one‐dimensional theory to a more general method that is applicable to buildings with internal and external oil‐dampers installed in an arbitrary story. The accuracy of the proposed method is demonstrated through numerical calculations using a model of a high‐rise building with and without internal and external oil‐dampers. The proposed method is effective in the preliminary stages of improving the seismic performance of high‐rise buildings.  相似文献   

10.
The tuned mass damper inerter (TMDI) is an enhanced variant of the tuned mass damper (TMD) that benefits from the mass‐amplification effect of the inerter. Here, a multi‐TMDI (MTMDI) system (comprising more than one TMDI) linking two adjacent high‐rise buildings is presented as an unconventional seismic protection strategy. The relative acceleration response of the adjacent structures triggers large reaction forces of the inerter devices in the MTMDI, which in turn efficiently improve the seismic performance of the two buildings. By addressing a real project of two adjacent high‐rise buildings connected by two corridors equipped with the proposed MTMDI system, the displacement‐, interstory drift‐, and acceleration‐based parametric optimizations are separately performed by employing Nondominated Sorting Genetic Algorithm II (NSGA‐II) under 44 ground motions from the FEMA P695 far‐field record set. It is found that the frequency content of the seismic input has strong impact on the MTMDI mitigation performance. Adopting realistic mass ratio constraints, the optimally designed MTMDI outperforms both conventional MTMD and single TMDI in acceleration control, while it is not much effective in mitigating the displacement response due to the highly flexible nature of the high‐rise buildings, in contrast to other literature studies generally focused on low‐to‐medium rise buildings.  相似文献   

11.
High‐strength concrete columns have the advantage of increasing the amount of usable area in the building because the cross‐section of the columns takes up less space compared with columns using normal strength concrete. However, it is difficult to weld the steel reinforcement and steel members because of the narrow column width due to a decrease in the cross‐section of the column, thereby causing construction delay in many cases. In this paper, five construction methods with different details for high‐strength reinforced concrete columns are tested to improve the buildability of the columns. Five specimens with different construction details were tested and analyzed based on four aspects: (a) the relationship between load and displacements, (b) strain distributions, (c) axial stiffness, and (d) crack patterns. Specimens were constructed using concrete with a compressive strength of 55 MPa, and the design strength of all five specimens were set to about 10,740 kN. From results of the experiment, the specimen with a reduced number of vertical reinforcements from 24 of HD22 (SD400, Fy = 400 MPa) to 16 of UD22 (SD600, Fy = 600 MPa) was the most effective specimen to improve the buildability of the column without deteriorating the structural performance of the reference specimen.  相似文献   

12.
This study presents a simplified analysis procedure for the convenient estimation of nonlinear seismic demands of high‐rise rocking wall structures. For this purpose, the displacement modification approach used in the nonlinear static procedure of ASCE/SEI 41‐13 is adopted. However, in the current study, this approach is extended to every significant vibration mode of the structure whereas the displacement modifying coefficients for different modes are calculated using the typical flag‐shaped hysteresis behavior of rocking walls. The parameters of this hysteresis behavior are selected to represent rocking walls with a practical range of energy dissipation capacity and postgap‐opening stiffness. The computed peak inelastic‐to‐elastic displacement ratios are presented as mean spectra, which can be used for the convenient estimation of pushover target displacement for every significant vibration mode. The accuracy of proposed procedure is examined using the seismic demands obtained from the nonlinear response history analysis of a 20‐story case study rocking wall structure. Furthermore, a modal decomposition technique is used to determine the individual modal seismic demands. The proposed procedure is found to predict both the combined and the individual modal demands with a reasonable accuracy and can serve as a convenient analysis option for the design and performance evaluation of high‐rise rocking wall systems.  相似文献   

13.
The differential length changes of vertical members in a high‐rise building due to elastic, creep and shrinkage shortenings are of primary concern since the differential shortening of the vertical members causes unexpected damages on structural and nonstructural members. In contrast to researches on prediction methods for calculation of the amount of the shortenings, only few methods or algorithms of compensation of the differential column shortenings have been reported. In this paper, a practical compensation method using moving average correction is presented. The proposed method is applied to the compensation of the differential shortenings of the vertical members in a 70‐story high‐rise building. The performance of the moving average correction method is compared with the optimal compensation method based on simulated annealing algorithm. It is demonstrated that the magnitude of the differential shortening or the degree of the slab tilt due to the length changes in the vertical members can be controlled without using structural optimization techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
To reduce across‐wind effects on high‐rise buildings, this paper introduces a new active aerodynamic control named steady suction. To test its effect, the control mechanism of steady suction is discussed first, and then, a synchronization pressure test was conducted in a wind tunnel to measure the across‐wind loading on a high‐rise model (Commonwealth Advisory Aeronautical Research Council standard high‐rise building model). A series of analytical methods were used to compare the different effects on across‐wind aerodynamic forces caused by different parameters. The results show that when the wind blows straight on the wide side of the model, steady suction arranged on the narrow side close to the leading edge can effectively reduce the fluctuating base moment. When the wind blows straight on the narrow side, steady suction arranged on the middle of the wide side effectively reduces the fluctuating base moment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Fluid viscous dampers are proved to be effective for reducing the response of high‐rise buildings subjected to wind excitations so as to enhance structural habitability, which serves as a critical performance in serviceability design. High‐rise buildings attached with fluid viscous dampers, however, exhibit nonlinearity and even act as stiff systems in most cases of wind‐induced vibration mitigation. The traditional equivalent linearization methods employed in practices often fail to obtain an accurate solution. Equivalent linearization methods, including the energy‐dissipation equivalent linearization method and the statistical linearization technique, are first studied and validated in this paper by the backward difference formula, which was verified to be of high accuracy through the nonlinear dynamic analysis. The damping optimization for habitability control is then proceeded. Two families of serviceability criteria, the minimization of standard deviation of roof acceleration employed in traditional habitability analysis and the minimization of failure probability of roof acceleration proposed in the present study, are addressed. For the logical treatment of randomness inherent in wind excitations and its influence upon structural reliability, the probability density evolution method is employed. Numerical results reveal that the criterion of minimizing failure probability of roof acceleration has better performance in habitability enhancement.  相似文献   

16.
Current building codes aim to ensure the acceptable performance of structures implicitly. Because these provisions are empirically developed for low‐ to medium‐rise buildings, their applicability to high‐rise building warrants further investigation. In this paper, the effect of design drift limit on the seismic performance of reinforced concrete dual high‐rise buildings is considered. Nine buildings are designed for 3 drift limits: the code limit (i.e., 2%), one that is lower than the code limit (i.e., 1.5%), and one that is higher than the code limit (i.e., 3%). For each drift limit, buildings of 3 heights (20, 25, and 30 stories) are designed. Finite element models are constructed in OpenSees, and incremental dynamic analysis is performed. The results are used to develop probabilistic seismic demand models, where model parameters are determined using maximum likelihood estimation to incorporate equality and censored data. Reliability analysis using probabilistic demand models is conducted to derive seismic fragility and demand hazard curves. In addition, the collapse performance of the drift limits is evaluated using the Federal Emergency Management Agency (FEMA) P695 procedure. The study results show that the design drift limit affects the building's seismic performance, and the effect depends on the performance level considered. Moreover, from a structural integrity perspective, a larger design drift limit does not induce a significantly higher risk and might yield a more cost‐effective design.  相似文献   

17.
The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code‐compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20‐, 40‐, and 60‐story buildings with a framed tube as well as a tube‐in‐tube system. Such a design gives rise to a basis for the fair comparison of the behavior of the framed tube with that of the tube‐in‐tube system under applied loads. The optimal weight of the buildings with the tube‐in‐tube system turns out to be slightly less than that of the buildings with the conventional framed‐tube system.  相似文献   

18.
A vast quantity of measurements of wind‐induced non‐Gaussian effects on buildings call for the burgeoning development of more advanced extrema estimation approaches for non‐Gaussian processes. In this study, a well‐directed method for estimating the peak factor and modeling the extrema distribution for non‐Gaussian processes is proposed. This method is characterized by using two fitted probability distributions of the parent non‐Gaussian process to separately fulfill the estimations of the extrema on long‐tail and short‐tail sides. In this method, the Johnson transformation is adopted to be the probabilistic model for fitting the parent distribution of the non‐Gaussian process due to its superior fitting goodness and universality. For each dataset, two Johnson transformations will be established by two parameter estimation methods to individually estimate the extrema on two sides. Then a Gumbel assumption is applied for conveniently determining the non‐Gaussian peak factor. This method is validated through long‐duration wind pressure records measured on the model surfaces of a high‐rise building in wind tunnel test. The results show that the proposed method is more accurate and robust than many existing ones in estimating peak factors for non‐Gaussian wind pressures.  相似文献   

19.
带边框低矮抗震墙在建筑结构设计中应用广泛,其受力性能复杂,在地震作用下一般发生剪切破坏.以试验研究及有限元分析结果为基础,分析了带边框低矮抗震墙的承载机理.利用等效斜压杆的方法,给出了无洞及开洞带周边框架RC低矮抗震墙的受剪承载力和不同受力阶段刚度的计算公式,并与试验结果进行了比较.研究结果可供设计计算时参考.  相似文献   

20.
目前各国抗震设计规范推荐采用反应谱法进行结构抗震分析。传统反应谱法需要采用地震动白噪声假定和峰值因子一致性假定,对于大规模复杂建筑结构地震响应的计算结果造成较大影响。为了摒弃上述2个计算假定,采用直接迭代法获取与规范反应谱完全等价的地震动功率谱,并计算获得振型相关系数曲面和振型峰值因子曲线。在此基础上,利用结构响应峰值的精确CQC组合公式,提出一种改进反应谱法,以获取具有明确超越概率信息的地震响应峰值。针对某复杂高层建筑结构进行抗震分析,全面剖析了传统反应谱法中地震动白噪声假定和峰值因子一致性假定的影响规律,并验证了改进反应谱法与随机振动方法具有同样的计算精度。改进反应谱法所需用到的振型相关系数和振型峰值因子可以由规范反应谱完全确定,具有良好的工程应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号