首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When subjected to long‐period ground motions, many existing high‐rise buildings constructed on plains with soft, deep sediment layers experience severe lateral deflection, caused by the resonance between the long‐period natural frequency of the building and the long‐period ground motions, even if they are far from the epicenter. This was the case for a number of buildings in Tokyo, Nagoya, and Osaka affected by the ground motions produced by the 2011 off the Pacific coast of Tohoku earthquake in Japan. Oil‐dampers are commonly used to improve the seismic performance of existing high‐rise buildings subjected to long‐period ground motion. This paper proposes a simple but accurate analytical method of predicting the seismic performance of high‐rise buildings retrofitted with oil‐dampers installed inside and/or outside of the frames. The method extends the authors' previous one‐dimensional theory to a more general method that is applicable to buildings with internal and external oil‐dampers installed in an arbitrary story. The accuracy of the proposed method is demonstrated through numerical calculations using a model of a high‐rise building with and without internal and external oil‐dampers. The proposed method is effective in the preliminary stages of improving the seismic performance of high‐rise buildings.  相似文献   

2.
Abstract: The accuracy of many damage identification methods depends significantly on the quality of measurements collected by sensors, such as accelerometers, concerning the response characteristics of a structure. Often the number of sensors used to collect measurements is limited due to available funds, equipment, and access. In addition, the excitation location can significantly affect a sensor's ability to collect quality measurement information. Therefore, both the location and number of sensors and the location of the excitation must be optimized to maximize the quality of information collected. A multi‐objective optimization approach is presented that minimizes the number of sensors specified while maximizing the sensitivity of the frequency response functions (FRFs) collected at each specified sensor location with respect to all possible damaged structural elements. The multiple Pareto‐optimal sensor/excitation layouts obtained aid in determining the number of sensors required to obtain an effective level of measurement information. The benefit of using Pareto‐optimal sensor/excitation layouts is investigated by using the optimized layouts to collect measurement information for a FRF‐based structural damage identification method. Trial results confirm that an increase in damage identification accuracy and efficiency is achieved when Pareto‐optimal sensor/excitation layouts are used instead of nonoptimal layouts. In addition, the Pareto‐optimal layouts improved damage identification accuracy in noisy measurement environments due to increasing the quality of measurements collected.  相似文献   

3.
The asymmetrical high‐rise building investigated in this paper is composed of a 299.1‐m‐high tower and a 235.2‐m‐high tower, which are diagonally and rigidly connected by two steel truss systems with the maximum span of 65.43 m. Given the great structural irregularities and complexities, the structural seismic performance is necessary to be investigated. A shaking table test of a 1/45 scaled model is conducted in this study, by which the structural damage pattern and dynamic responses are analyzed. The results show that the connecting trusses and rigid connection joints behave well during strong seismic excitations. The damages concentrate on the connecting floors, and the whole structural damage is slight. Most of the lateral resistance components remain elastic. The structure presents high seismic resistance against strong ground motions. Subsequently, a three‐dimensional finite element model of prototype structure is established and validated by the experimental results. The analyses indicate that performance of the connecting trusses is capable of coordinating translational and torsional deformation of the two towers and making them resist lateral seismic force together even subjected to maximum considered earthquakes. And this performance is still reliable although the high torsional modes are triggered.  相似文献   

4.
5.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

6.
The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code‐compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20‐, 40‐, and 60‐story buildings with a framed tube as well as a tube‐in‐tube system. Such a design gives rise to a basis for the fair comparison of the behavior of the framed tube with that of the tube‐in‐tube system under applied loads. The optimal weight of the buildings with the tube‐in‐tube system turns out to be slightly less than that of the buildings with the conventional framed‐tube system.  相似文献   

7.
To avoid the overturning hazard of high‐rise buildings with traditional isolation technology, a rock‐slip structure with cables (RSSC) was proposed to improve their seismic performance. The mechanical model was established, and the motion behaviour equation of the RSSC was derived. Shake‐table tests of the RSSC were performed, and the results were compared with the corresponding finite‐element model simulations. The influences of key structural parameters and earthquake motion characteristics were analysed. The study results showed that the RSSC could effectively reduce the internal seismic force response and interlayer deformation under a severe earthquake, as well as decrease the overturning probability. The seismic reduction effect was influenced by the prestressed force, the aspect ratio of the structure, and the friction coefficient between the superstructure and foundation as well as seismic site type. The motion equation derived in this paper can be used to theoretically predict the motion behaviour of RSSC.  相似文献   

8.
Steel‐framed modular buildings afford certain advantages, such as rapid and high‐quality construction. However, although steel‐framed modules have been adopted in several countries, most of them are limited to low‐to‐medium‐rise structures; modular high‐rise buildings are rare. This study proposes a feasible structural design solution for high‐rise buildings using a steel‐framed modular system. A 31‐story student hostel building in Hong Kong is redesigned as a steel‐framed modular building and used as a case study. The finite element models of the building are formulated, and the structural behaviors under wind and earthquake load scenarios are compared. Moreover, the structural design process used for the 31‐story building is applied to design a hypothetical 40‐story modular building to further examine the proposed design solution. The numerical analysis results indicate that the roof lateral displacements and interstory drift ratios of the redesigned modular building are within the allowable limits of design codes; moreover, the modular connections behave elastically under the most adverse loading scenarios. Accordingly, the proposed solution can be used to design steel‐framed modular buildings of up to 40 stories, while complying with relevant wind and seismic codes.  相似文献   

9.
In this paper, the analysis of optimal locations of framed‐tube structures with outriggers is conducted with the uniform and nonuniform core and peripheral columns using genetic algorithm, aiming to minimize the interstory drift. Also, comparison and difference of the results between the uniform and nonuniform structures are carried out and discussed. Besides, several parameters which influence the behavior of the structure are identified and analyzed, such as different objective functions, segments of outriggers, thickness of core wall, stiffness of outriggers, and grade of concrete strength. In addition, a Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 260‐m high‐rise building as a target building, the optimal locations of one to two sets of outriggers subjected to three kinds of horizontal loadings (uniform, parabolic, and triangular) are obtained and can be utilized for the structural preliminary design of tall buildings.  相似文献   

10.
The limitation of height‐to‐width ratio (HWR) for a base‐isolated building with elastomeric rubber bearings is of considerable concern to structural design engineers. Guidelines and codes on this type of building have to deal with this issue. Nevertheless, until now, no systematical and quantitative studies have been done on this problem for base‐isolated buildings. For this reason, the main objective of this paper is to focus on investigations on the limit of the HWR for the isolated building with rubber bearings under different conditions subjected to earthquake excitations. The simplified formulation is derived to explore the rules of seismic responses for the structural system and some influential factors, such as the site soil conditions, seismic ground motion intensity, period of the isolated system, period of the superstructure and layout of isolators, are studied and discussed. According to the numerical results, it has been found that the effects of site soil conditions on the HWR limit values are important: the softer the site is, the smaller the HWR limit value is under different seismic intensities. The predominant period of an isolated building also plays a considerable role in the HWR limit value, namely, the isolated building with a longer period may have a relatively large HWR value; and the stiffness of the superstructure affects the HWR limit value little. Furthermore, an effective method to improve the HWR limit value is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Recently, the issue of large inelastic seismic force demands at severe ground shakings such as maximum considered earthquake level has been highlighted in the conventionally designed high‐rise reinforced concrete core wall buildings. Uncoupled modal response history analysis was used in this study to identify the modes responsible for the large inelastic seismic force demands. The identification of dominant modes and mean elastic design spectra of seven representative ground motions for different damping ratios has led to the identification of three control measures: plastic hinges (PHs), buckling‐restrained braces (BRBs) and fluid viscous dampers (FVDs). The identified control measures were designed to suppress the dominant modes responsible for the large inelastic seismic force demands. A case‐study building was examined in detail. Comparison of the modal as well as the total responses of the case‐study building with and without the control measures shows that all the control measures were effective and able to reduce the inelastic seismic demands. A reduction of 33%, 22% and 27% in the inelastic shear demand at the base and a reduction of 60%, 22% and 26% in the inelastic moment demand at mid‐height were achieved using the PHs, BRBs and FVDs, respectively. Furthermore, a reduction of about 30–40% in the inelastic seismic deformation demands was achieved for the case of the BRBs and FVDs. The study enables us to gain insight to the complex inelastic behavior of high‐rise wall buildings with and without the control measures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The concept of shared tuned mass damper (STMD) for twin towers linked by a sky corridor using flexible joints is proposed in this paper. The analytical expressions of the transform functions and random earthquake responses of the flexibly connected structures are derived using a three‐degrees‐of‐freedom model system. The seismic reduction mechanism of the STMD is revealed using comparative analysis between the structures with STMD and those connected using a viscoelastic damper. The effect of the nondimensional parameters such as the frequency ratio of the two primary structures, mass ratio, tuning frequency ratio of the corridor, and damping ratio of the passive control devices on the structural seismic response is investigated. Optimum parametric analysis is performed using the principle of minimizing the displacements of both towers, and the optimal parameter formulas are established. Numerical analysis is conducted to verify the control effectiveness of the connected multi‐degree‐of‐freedom system subjected to the El Centro earthquake ground motion. The results show that the earthquake responses of the towers can be effectively reduced if the parameters of the flexible connecting elements are appropriately selected for a certain corridor mass. Moreover, a remarkable seismic reduction effect can be achieved if the towers have similar dynamic properties.  相似文献   

13.
In this paper, an optimal placement methodology for metallic dampers is proposed to upgrade the seismic performance of multistory buildings. Most previous studies on optimal damper placement (ODP) problems have been focused on minimizing the seismic responses, whereas the present study aims to utilize the minimum total cost of dampers to achieve a prescribed level of seismic response. To this end, the optimization objective is constructed based on a cost‐effectiveness criterion, and the optimization constraint is defined based on a desired level of seismic response. An improved integer‐coded genetic algorithm is presented for solving the ODP problem. A 16‐story shear building is illustrated to verify the proposed optimal placement methodology. It is shown that the proposed methodology can be used to achieve the predetermined performance level while minimizing the retrofitting cost. Moreover, different algorithms, objective functions, and levels of accuracy on the optimization are also compared. Finally, a two‐step optimization approach is proposed for achieving better placement schemes with less computational efforts.  相似文献   

14.
In the recent years, more and more great ideas about architectural design were inspired from bionics, that is, the China National Stadium, Taipei 101, and India Lotus Temple were first inspired from bird's nest, bamboo, and blooming lotus, respectively. However, being a feast to the eyes, those innovative architectures with complex structural behavior and unknown seismic performance are always being a challenge to structural engineers. Hereinafter, a DNA‐like high‐rise building with two separate spiral‐up towers was first outlined, in which each of the tower consist of an interior reinforced concrete core with inserted steel columns and an exterior composite frame made of steel beams and steel pipe–concrete columns. To study the influence of the connection bridges on the seismic performance under different level of earthquake excitation and torsional effect under gravity load, the load transfer mechanism of vertical force and lateral force was conducted, and a finite element model was built with parametrical studies. It can be concluded from the results from the parametrical studies that the drift angle was sharply decreased at the locations where the connection bridges combines two single towers, indicating that the lateral confinement effect of the connection bridges not only strengthen the whole structure but also leads to a discontinuity of the structural stiffness.  相似文献   

15.
Despite wide‐ranging studies on fragility analysis and collapse safety assessment of short to medium‐rise reinforced concrete (RC) structures, a new interest in the topic is still valuable and even necessary for tall RC buildings. This study aims at establishing fragility relationships as well as collapse probability of high‐rise RC core‐wall buildings under maximum considered earthquake ground motions. This study is carried out in a probabilistic framework on a case study of a fully 3‐dimensional numerical model developed to simulate seismic behavior of a 42‐story building having a RC core‐wall system. Proposing planar and vertical distributions of ductility and damage indices, the incremental dynamic analysis, and the multi‐direction nonlinear static (pushover) analyses were employed to reach the research goal. Median collapse‐level capacities were defined in terms of seismic responses (e.g., ductility/damage indices) as well as several intensity measures by employing statistical analyses and cumulative density functions. Available and acceptable collapse margin ratios were next estimated to quantify collapse safety at maximum considered earthquake shaking level. On an average basis, the statistics indicated 9%–10% and 5%–6% collapse probability of the building subjected to near‐ and far‐field ground motions, respectively.  相似文献   

16.
The effects of ground motion directionality on seismic response of buildings are at the center of ongoing debate among earthquake engineering professionals and researchers. This has prompted a renewed interest to have a better understanding of directionality effects of near‐field pulse‐like ground motions on seismic response of tall buildings to further improve seismic design in this respect. In particular the prediction of the maximum displacement response along the structural axis which is called the critical displacement response. This paper presents the results from parametric studies that investigate the directionality effects on nonlinear dynamic response of simple structures and a tall building. The outcome of these analyses was the development of a method, which relies on the maximum velocity to provide a good approximation to the critical displacement response. The method developed is computationally efficient and involves less calculation than other methods. In addition, it was determined that the building responses to records rotated to fault‐normal can lead to significant underestimation of the maximum response along the structural axis, using the fault‐parallel ground motion also may lead to large response differences and smaller yet significant differences when using the maximum direction ground motion.  相似文献   

17.
In super high‐rise buildings with varying story heights, the wind‐induced inter‐story drifts might violate the specified limit. However, these effects have seldom been concerned in wind‐induced response analysis. The theory and application of equivalent static wind load (ESWL) for wind‐induced inter‐story drifts of super high‐rise buildings were studied in this paper. A spectral decomposition method suitable for multi‐point excitation problems was firstly proposed. The formula of ESWL targeting for largest inter‐story drift was derived. For more reasonable structural design, the ESWL for multiple targets including displacement atop of building and inter‐story drifts at all story levels is put forward, in which the dominant modal inertial forces are adopted as the based load vectors. The presented methods were finally verified by its application for the wind‐induced response analysis for a tallest super tall building in Guangzhou. The researched results showed that the proposed spectral decomposition method not only has the same precision as the complete quadratic combination method but also possesses higher computation efficiency. The ESWL for multiple targets produces the same static responses for all the specified wind‐induced response, so it is much more rational for wind‐resistant structural design. Meanwhile, it is more reasonable to select the wind‐induced responses in the same direction simultaneously as the targeted values for obtaining the required ESWLs; however, the ESWL targeting for the wind‐induced responses in all degrees of freedom would generate more queer and unrealistic ESWLs distribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The number of sensors and the corresponding locations are very important for the information content obtained from the measured data, which is a recognized challenging problem for large‐scale structural systems. This article pays special attention to the sensor placement issues on a large‐scale periodically articulated structure representing typical pipelines to extract the most information from measured data for the purpose of model identification. The minimal model parameter estimation uncertainties quantified by the information entropy (IE) measure is taken as the optimality criterion for sensors placement. By utilizing the inherent periodicity property of this type of structure together with the Bloch theorem, a novel tailor‐made modeling approach is proposed and the computational cost required for dynamic analysis to form the IE with respect to the entire periodic structure can be dramatically reduced regardless of the number of contained periodic units. In addition, to avoid the error of dynamic modeling induced by conventional finite element method based on static shape function, the spectral element method, a highly accurate dynamic modeling method, is employed for modeling the periodic unit. Moreover, a novel discrete optimization method is developed, which is very efficient in terms of the number of function evaluations. The proposed methodology is demonstrated by both numerical and laboratory experiments conducted for a bolt‐connected periodic beam model.  相似文献   

19.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

20.
This article presents a distributed nondominated sorting genetic algorithm II (NSGA‐II) for optimal seismic retrofit design using buckling restrained braces (BRBs) on a cluster of multi‐core PCs. In the formulation, two conflicting objective functions of the initial BRB installation cost required for seismic retrofitting and damage cost that can be incurred by earthquakes expected during the life cycle of the structure were minimized. Because time‐consuming nonlinear structural analyses are required for fitness evaluations of individuals in every generation, parallelism at candidate design level or individual level is exploited by assigning fitness evaluations for individuals to slave core processors evenly. The distributed algorithm is applied to seismic retrofit design of 2D steel frame structure and 3D irregular reinforced concrete structure. The performance of the distributed NSGA‐II was assessed based on three criteria: convergence of the distributed algorithm, efficiency of distributed computing, and quality of optimal solutions. Implementation of the distributed algorithm on the multi‐core cluster consisting of up to 64 core processors resulted in relatively high speedups or efficiencies of the distributed optimization without deteriorating the quality of the optimal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号