首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two field experiments, in which differing amounts and types of plant residues were incorporated into a red earth soil, were conducted at Katherine, N.T., Australia. The aim of the work was to evaluate the effect of the residues on uptake of soil and fertilizer N by a subsequent sorghum crop, on the accumulation and leaching of nitrate, and on losses of N.Stubble of grain sorghum applied at an exceptionally high rate (~ 18 000 kg ha–1) reduced uptake of N by sorghum by 13% and depressed the accumulation of nitrate under a crop and particularly under a fallow.Loss of fertilizer N, movement of nitrate down the profile, and uptake by the crop was studied in another experiment after application of N as15NH4 15NO3 to field microplots. By four weeks after fertilizer application 14% had been lost from the soil-plant system and by crop maturity 36 per cent had been lost. The pattern of15N distribution in the profile suggested that losses below 150 cm had occurred during crop growth. The recovery of15N by the crop alone ranged from 16 to 32 per cent. There was an apparent loss of N from the crop between anthesis and maturity. Residue levels common to sorghum crops in the region (~ 2000 kg ha–1) did not significantly affect uptake by a subsequent sorghum crop, N losses, or distribution of nitrate in the profile.  相似文献   

2.
Soil fumigation, commonly used in vegetable production, may alter the rate of nitrification, affecting availability of N for crop use. The objective of this research was to examine effects of soil fumigation and N fertilizer source on tomato growth and soil NO3–N and NH4–N in field production. Experiments 1 and 2 included application of methyl bromide at 420 kg ha-1 to a Norfolk sandy loam (fine loamy siliceous thermic Typic Kandiudult) in combination with preplant applications of calcium nitrate, ammonium nitrate, and ammonium sulfate at 144 kg N ha-1. An additional fumigant, metam-sodium, was included in the second experiment at 703 L ha-1 (268 kg sodium methyldithiocarbamate ha-1). Experiment 3 included methyl bromide and metam-sodium, with ammonium sulfate as the sole source of N applied at 144 kg N ha-1. In the first two studies, fumigants had little or no effect on soil NH4–N or NO3–N concentration. Tomato plants were larger and fruit yield was greater in fumigated plots, but there were few growth or yield responses to N source. In the third experiment, fumigants increased concentration of soil NO3–N and NH4–N at 16 days after fumigation (DAF), however, there was no effect on nitrification owing to fumigants. It appears that N source selection to overcome inhibition of nitrification is not necessary in plant production systems that involve fumigation  相似文献   

3.
Double-labelled15N ammonium nitrate was used to determine the uptake of fertilizer and soil N by ryegrass swards during spring and mid-season. The effects of water stress (40% of mean rainfall v 25 mm irrigation per 25 mm soil water deficit) and the rate of application of N in the spring (40 v 130 kg ha–1) on the recovery of 130 kg N ha–1 applied in mid-season were also evaluated. Apparent recovery of fertilizer N (uptake of N in the fertilized plot minus that in the control expressed as a percentage of the N applied) was 95 and 79% for fertilizer N applied in the spring at rates of 40 and 130 kg ha–1, respectively. Actual recovery of the fertilizer N assessed from the uptake of15N was only 31 and 48%, respectively. The uptake of soil N by the fertilized swards was substantially greater than that by the control. However, the increased uptake of soil N was always less than the amount of fertilizer N retained in or lost from the soil. Broadly similar patterns for the uptake of fertilizer and soil N were observed during mid-season. Uptake of N in mid-season was highest for swards which received 40 kg N ha–1 in the spring and suffered minimal water stress during this period. Application of 130 kg N ha–1 in spring reduced the uptake of N in mid-season to an extent similar to that arising from water stress. Only 1.8 to 4.2 kg ha–1 (3 to 10%) of the N residual from fertilizer applied in the spring was recovered during mid-season. Laboratory incubation studies suggested that only a small part of the increased uptake of soil N by fertilized swards could be attributed to increased mineralisation of soil N induced by addition of fertilizer. It is considered that the increased uptake of soil N is partly real but mostly apparent, the latter arising from microbially mediated exchange of inorganic15N in the soil.  相似文献   

4.
Anadequate supply of N for a crop depends among others on the amounts of N thataremineralized from the soil organic matter plus the supply of ammonium andnitrateN already present in the soil. The objective of this study was to determine thebehaviour of light fraction organic N (LFN), NH4-N, NO3-Nand total N (TN) in soil in response to different rates of fertilizer Napplication. The 0–5, 5–10, 10–15 and 15–30cm layers of a thin Black Chernozemic soil under bromegrass(Bromus inermis Leyss) at Crossfield, Alberta, Canada,weresampled after 27 annual applications of ammonium nitrate at rates of 0, 56,112,168, 224 and 336 kg N ha–1. The concentration andmass of TN and LFN in the soil, and the proportion of LFN mass within the TNmass usually increased with N rates up to 224 kg Nha–1. The increase in TN mass and LFN mass per unit ofNadded was generally maximum at 56 kg N ha–1 anddeclined with further increases in the rate of N application. The percentchangein response to N application was much greater for the LFN mass than for the TNmass for all the N rates and all soil depths that were sampled. Mineral N intheform of NH4-N and NO3-N did not accumulate in the soil at 112 kg N ha–1 rates, whereas theiraccumulation increased markedly with rates of 168 kg Nha–1. In conclusion, long-term annual fertilization at 112 kg N ha–1 to bromegrass resulted insubstantial increase in the TN and LFN in soil, with no accumulation ofNH4-N and NO3-N down the depth. The implication of thesefindings is that grasslands for hay can be managed by appropriate Nfertilization rates to increase the level of organic N in soil.  相似文献   

5.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

6.
At two sites, microplots under winter wheat were given 140 kg N ha–1 as labelled ammonium nitrate split in 80 kg N ha–1 at tillering and 60 kg N ha–1 at shooting. Soil and plant samples were analyzed at shooting, after anthesis and at grain harvest and a15N balance was established. The average recovery rate of 95% indicates that there were no marked N losses due to leaching and denitrification, which is attributed to the low rainfall in the two months after fertilizer application. Between 19 and 23% of the fertilizer N remained in the 0–30 cm soil layer as organically bound soil N. Up to 64% was taken up by the above-ground crop. On the loamy sand, 4% of the fertilizer N at harvest remained in the roots in the 0–30 cm layer and only 3% was found as inorganic N in the 0–90 cm soil layer. The fertilizer N applied diminished plant uptake of soil N in the period between fertilizer application and harvest. As compared with the control, the fertilized plants extracted 25 and 28% less soil N from loamy sand and loess soil, respectively. The results show that application of mineral N fertilizer helps to maintain the mineralizable N content of the soil, which has been accumulated in the course of long-term intensive crop production, by adding N to the soil organic pool and simultaneously reducing the supply of soil N to the plants.  相似文献   

7.
Use of15N-depleted fertilizer materials have been primarily limited to fertilizer recovery studies of short duration. The objective of this study was to determine if15N-depleted fertilizer N could be satisfactorily used as a tracer of residual fertilizer N in plant tissue and various soil N fractions through a corn (Zea mays L.) -winter rye (Secale cereale L.) crop rotation. Nitrogen as15N-depleted (NH4)2SO4 was applied at five rates (0, 84, 168, 252, and 336 kg N ha–1) to corn. Immediately following corn harvest a winter rye cover crop treatment was initiated. Residual fertilizer N was easily detected in the soil NO 3 - -N fraction following corn harvest (140-d after application). Low levels of exchangeable NH 4 + -N (<2.5 mg kg–1) did not permit accurate isotope-ratio analysis. Fertilizer-derived N recovered in the soil total N fraction following corn harvest was detectable in the 0 to 30-cm depth at each N rate and in the 30 to 60 and 60 to 90-cm depths at the 336 kg ha–1 N rate. Atom %15N concentrations in the nonexchangeable NH 4 + -N fraction did not differ from the control at each N rate. Nitrogen recovery by the winter rye cover crop reduced residual soil NO 3 - -N levels below the 10 kg ha–1 level needed for accurate isotope-ratio analysis. Atom %15N concentrations in the soil total N fraction (approximately one yr after application) were indistinguishable from the control plots below the 168, 252, and 336 kg ha–1 N rate at the 0 to 30, 30 to 60, and 60 to 90-cm depths, respectively. Recovery of residual fertilizer N by the winter rye cover crop was verified by measuring significant decreases in atom %15N concentrations in rye tissue with increasing N rates. The greatest limitation to the use of15N-depleted fertilizer N as a tracer of residual fertilizer N in a corn-rye crop rotation appears to be its detectibility from native soil N in the total N pool.Research partially supported by grants from the National Fertilizer and Environmental Research Center/TVA and the Virginia Division of Soil and Water Conservation.  相似文献   

8.
The influence of N fertilizer rate on uptake and distribution of N in the plant,15N labelled fertilizer uptake and sugar yield were studied for 3 years on autumn sown sugar beet (Beta vulgaris L.) under Mediterranean (Southern Spain) rain-fed and irrigated conditions. Available average soil N prior to sowing was 69 kg N ha–1, and net mineralisation in the soil during the growth period was 130 kg N ha–1. Maximum N uptake occurred in the spring and increased with increasing fertilizer rates in the irrigated crop. There was no increase in N uptake in the sugar beet cropped under rain-fed conditions because of water shortage. Maximum average N uptake both by roots and tops was between 200 and 250 kg N ha–1. When N fertilizer was not applied, average uptake from the soil was between 130 and 140 kg N ha–1. At the end of the growth period there was a marked translocation of N from the leaves to the root which increased with the N fertilizer rate. The N ratio top/roots at harvest was 0.45–0.5 and 0.8- - 1 in the irrigated and rain-fed sugar beet, respectively. Maximum15N labelled fertilizer uptake took place in May-June, being larger in irrigated sugar beet or when spring rainfall was more abundant. Fertilizer use efficiency varied between 30% and 68%. Sugar yield response to N fertilizer rates depended on the N available in the soil and on the total water input to the crop, particularly in spring. The response was more constant in the irrigated crop, where optimum yield was obtained with a fertilizer rate of 160 kg N ha–1. In the rain-fed crop, the optimum dose proved more erratic, with an estimated mean of 100 kg N ha–1. The amount of N required to produce 1 t of root and of sugar ranged between 1.5 and 3.8 kg N and between 11.1 and 22.4 kg N respectively, and varied according to the N fertilizer rates applied.  相似文献   

9.
Laboratory incubation and greenhouse experiments were conducted to investigate the comparative effectiveness of urea and ammonium sulphate in opium poppy (Papaver somniferum L.) using15N dilution techniques. Fertilizer treatments were control (no N), 600 mg N pot–1 and 1200 mg N pot–1 (12 kg oven dry soil) applied as aqueous solution of urea or ammonium sulphate. Fertilizer rates, under laboratory incubation study were similar to that under greenhouse conditions. A fertilizer15N balance sheet reveals that N recovery by plants was 28–39% with urea and 35–45% with ammonium sulphate. Total recovery of15N in soil-plant system was 77–82% in urea. The corresponding estimates for ammonium sulphate were 89–91%. Consequently the unaccounted fertilizer N was higher under urea (18–23%) as compared to that in ammonium sulphate (9–11%). The soil pH increased from 8.2 to 9.4 with urea whereas in ammonium sulphate treated soil pH decreased to 7.3 during 30 days after fertilizer application. The rate of NH3 volatilization, measured under laboratory conditions, was higher with urea as compared to the same level of ammonium sulphate. The changes in pH of soil followed the identical trend both under laboratory and greenhouse conditions.  相似文献   

10.
Human urine - Chemical composition and fertilizer use efficiency   总被引:2,自引:0,他引:2  
Stored human urine had pH values of 8.9 and was composed of eight main ionic species (> 0.1 meq L–1), the cations Na, K, NH4, Ca and the anions, Cl, SO4, PO4 and HCO3. Nitrogen was mainly (> 90%) present as ammoniacal N, with ammonium bicarbonate being the dominant compound. Urea and urate decomposed during storage. Heavy metal concentrations in urine samples were low compared with other organic fertilizers, but copper, mercury, nickel and zinc were 10–500 times higher in urine than in precipitation and surface waters. In a pot experiment with15N labelled human urine, higher gaseous losses and lower crop uptake (barley) of urine N than of labelled ammonium nitrate were found. Phosphorus present in urine was utilized at a higher rate than soluble phosphate, showing that urine P is at least as available to crops as soluble P fertilizers.  相似文献   

11.
The major processes involved in acidification of soils under intensively managed grassland are the transformation and subsequent leaching of applied nitrogen (N), assimilation of excess cations in herbage and acidic atmospheric deposition. Carbonates from fertilizers and excess cations in purchased concentrates are the most important proton (H+) neutralizing agents applied to grassland. In this study, the effects of grazing, cutting and N application on the net proton loading from each of the main processes were calculated, using a simple model.On mown swards, simulated excess cation uptake by the sward released 4.5–9.3 kmolc H+ ha–1 yr–1. The total proton loading on mown grassland decreased from about 8.0 to 5.3 kmolc ha–1 yr–1 when fertilizer N input as CAN-27 increased from 0 to about 400 kg ha–1 yr–1. Contributions from atmospheric deposition ranged from 2.2 kmolc ha–1 yr–1 when herbage yield exceeded 10 Mg ha–1 yr–1 to 3.0 kmolc ha–1 yr–1 when herbage production was only 5.5 Mg ha–1 yr–1.On grazed swards, transformation of organically bound N from urine and dung to nitrate (NO 3 - ) and the subsequent leaching of excess NO 3 - was the main source of protons. Application of 400 kg N ha–1 yr–1 to grazed swards increased the proton loading from transformed N from 3.9 to 16.9 kmolc ha–1 yr–1. The total proton loading on grazed swards exceeded that of mown swards when the input of fertilizer N exceeded 150 kg ha–1 yr–1.Underestimation of the amount of N immobilized in the soil biomass and lost by denitrification may have resulted in a slight overestimation of the amount of N lost by leaching and thereby also the simulated total proton loading.  相似文献   

12.
15N-labelled ammonium sulphate or15N-labelled urea were each applied in solutionat a rate of 30 kg N ha-1 to the surface of 20soil cores (52 mm internal diameter × 100 mm deep)located on a field experiment at the ICARDA station,Tel Hadya, Syria. Recovery of 15N-label in theammonium, nitrate, organic and/or urea-N pools in thesoil was measured on days 0, 1, 2, 5 and 13 afterapplication. Total recovery of 15N was initially100%, but by day 13 after application it had declinedto 51% with urea and 73% with ammonium sulphate.Ammonium nitrate labelled either as ammonium or asnitrate was also applied to the soil surface of 8other cores at the same time. 15N recovery in thefour soil N pools was measured only on day 12 afterapplication. Total recovery of 15N-label was 75%with labelled ammonium and 57% with labelled nitrate.Volatilization of ammonia from this calcareous soil(pH 8.1) is one probable mechanism of N loss fromammonium and urea fertilizers: with nitrate bothleaching beyond the base of the core (i.e. 100 mm) and denitrification were responsible for Nlosses. These large losses of N immediately afterapplication have implications for fertilizermanagement practices.  相似文献   

13.
This paper reports a study on the distribution of dinitrogen between the atmosphere, floodwater and porewater of the soil in a flooded rice field after addition of15N-labelled urea into the floodwater.Microplots (0.086 m2) were established in a rice field near Griffith, N.S.W., and labelled urea (80 kg N ha–1 containing 79.25 atoms %15N) was added to the floodwater when the rice was at the panicle initiation stage. Emission of nitrous oxide and dinitrogen was measured directly during the day and overnight, using a cover collection method and gas chromatographic and mass spectrometric analytical methods. Ammonia volatilization was calculated with a bulk aerodynamic method from measurements of wind speed and floodwater pH, temperature and ammoniacal nitrogen concentration. Seven days after urea application the15N2 content of the floodwater and soil porewater was determined and total fertilizer nitrogen loss was calculated from an isotopic balance.Throughout the experimental period gas fluxes were low; nitrous oxide, ammonia and dinitrogen flux densities were less than 5, 170 and 720 g N ha–1 d–1, respectively. The greatest dinitrogen flux density was observed two days after urea addition and this declined to ~ 100 g ha–1 d–1 after seven days.The data indicate that, of the urea nitrogen added, 0.02% was lost to the atmosphere as nitrous oxide, 0.9% was lost by ammonia volatilization, and 3.6% was lost as dinitrogen gas during the 7 days of measurement. At the end of this period 0.028% and 0.002% of the added nitrogen was retained as dinitrogen gas in the floodwater and soil porewater respectively. Recovery of the15N applied as nitrogen gases, plant uptake, and soil and floodwater constituents totaled about 94% of the nitrogen added.  相似文献   

14.
Management of nitrogen by fertigation of potato in Lebanon   总被引:2,自引:0,他引:2  
Reports on soil and groundwater contamination with nitrates in Lebanon and other developing countries could be related to the mismanagement of water and fertilizer inputs. The objective of this work was to determine the N requirements and N-use efficiency of a main-crop potato in Lebanon, irrigated by a drip system, compared to the farmer's practice of macro-sprinkler. In the drip irrigation, fertilizers input was as soil application at the time of sowing or added continuously with the irrigation water (fertigation). Nitrogen-fertilizer recovery was determined using 15N-labeled ammonium sulfate. Fertigation with continuous N feeding based on actual N demands and available sources allowed for 55% N recovery. For a total N uptake of 197 kg ha–1 per season in the lower N rate, the crop removed 66 kg N ha–1 from fertilizers. The spring potato crop in this treatment covered 44.8% of its N need from the soil and 21.8% from irrigation water. Higher N input increased not only N derived from fertilizers, but also residual soil N. Buildup of N in the soil with the traditional potato fertilization practice reached 200 kg N ha–1 per season. With increasing indications of deteriorating groundwater quality, we monitored the nitrate leaching in these two watering regimes using soil solution extractors (tensionics). Nitrate leaching increased significantly with the macro-sprinkler technique. But N remained within the root zone with the drip irrigation. The crop response to applied N requires a revision of the current fertilizer recommendation in semi-arid regions, with an improved management of fertilizer and water inputs using fertigation to enhance N recovery.  相似文献   

15.
In order to achieve efficient use of nitrogen (N) and minimize pollution potentials, producers of irrigated maize (Zea mays L.) must make the best use of N from all sources. This study was conducted to evaluate crop utilization of nitrate in irrigation water and the effect N fertilizer has on N use efficiencies of this nitrate under irrigated maize production. The study site is representative of a large portion of the Central Platte Valley of Nebraska where ground water nitrate-N (NO3-N) concentrations over 10 mg L–1 are common. Microplots were established to accommodate four fertilizer N rates (0, 50, 100, and 150 kg ha–1) receiving irrigation water containing three levels of NO3-N (0, 10, 20 mg L–1). Stable isotope15N was applied as a tracer in the irrigation water for treatments containing 10 and 20 mg L–1 NO3-N. Plots that did not receive nitrate in the irrigation water where tagged with15N fertilizer as a sidedress treatment. Sidedressed N fertilizer significantly reduced irrigation-N uptake efficiencies. When residual N uptake is added to first year plant usage, total irrigation NO3-N uptake efficiencies are similar to total sidedress N fertilizer uptake efficiencies for our cropping system over the two year period. Efficiency of irrigation-N use depends on crop needs and availability of N from other sources during the irrigation season.  相似文献   

16.
Ammonia volatilization from fertilizers applied to irrigated wheat soils   总被引:1,自引:0,他引:1  
A series of experiments using flow chambers was undertaken in the field to investigate the effects of stubble and fertilizer management, soil moisture and precipitation on ammonia volatilization following nitrogen application on chromic luvisols. In the first factorial experiment, urea at 100 kg N ha–1 was applied to the soil surface one, three and six days following irrigation; there were four rice stubble management systems comprising stubble burnt, stubble burnt then rotary hoed, stubble rotary hoed into the soil and stubble retained on the surface. Cultivation almost halved ammonia loss. The higher loss from uncultivated plots was ascribed to an alkaline ash bed on burnt plots, and to higher soil moisture and some retention of urea prills in the crop residue above the soil surface of the stubble retention plots. Average volatilization over a 12 day period following urea application from plots fertilizer one, three or six days after irrigation was 16, 15 and 4 kg N ha–1, respectively. Daily application of up to 1.7 mm of water did not reduce volatilization and 35 kg N ha–1 was lost within five days of fertilization. Daily precipitation of 6.8 mm reduced loss to 14 kg N ha–1. This quantity of rain is uncommon in the region and it was concluded that showery conditions are unlikely to reduce volatilization. The third experiment demonstrated that the quantity of stubble on the soil surface had no effect on volatilization, and all plots lost 25% of applied nitrogen. In the fourth experiment, 100 kg N ha–1 as urea or ammonium nitrate was either broadcast onto the surface or stubble retention plots, or placed, and partly covered to simulate topdressing with a disc implement. Partial burial of urea reduced ammonia volatilization from 36 to 7 kg N ha–1, while partial burial of ammonium nitrate reduced loss from 4 to 0 kg N ha–1.  相似文献   

17.
Potatoes have a shallow rooting system. This can seriously affect the efficient use of fertilizer N. During two consecutive years, 1985 and 1986, a study was conducted on a commercial field to investigate the uptake of labelled N by potatoes under the recommended N rate and existing agricultural practices. The fertilizer efficiency, fertilizer distribution within the plant and soil and the total fertilizer balance were made using15NH4 15NO3 3.63 At. %15N excess. The recovery of the applied N-fertilizer in the whole plant was 25 and 56% for 1985 and 1986, respectively. The % Ndff and % Ndfs ranged between 30–40% and 60–70% respectively in both years. An important amount of fertilizer N was left in the soil after harvest. It reached 44 and 34% in 1985 and 1986, respectively.The total balance of the applied fertilizer N showed that up to 31 and 10% of the fertilizer N was lost during 1985 and 1986, respectively. The differences between the two growing seasons were mainly related to the method and timing of fertilizer N application and to the amount of rainfall.  相似文献   

18.
Field studies were conducted during two consecutive wet seasons in flooded rice (Oryza sativa L.) to determine the effect of green manure on urea utilization in a rice-fallow-rice cropping sequence. Replicated plots were fertilized with 60 to 120 kg of urea N ha–1 in three split applications (50, 25 and 25%) with or without incorporation of dhaincha (Sesbania aculeata L.) (100 kg N ha–1). During the first crop only 31 to 44% of the urea added was used by the rice. Incorporatingin situ grown dhaincha (GM) into the soil at transplanting had little effect on urea utilization. Forty-four to 54% of the N added was not recovered in the soil, rice crop, or as nitrate leachate during the first cropping season. Incorporation of GM had no effect on fertilizer N recovery. Only about 2% of the urea N added to the first rice crop was taken up by the second rice crop and, as in the first crop, the GM had little effect on residual N, either in amount or utilization.  相似文献   

19.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

20.
Five field experiments and one greenhouse experiment were carried out to assess the effects of nitrogen (N) fertilizer type and the amount of applied N fertilizer on nitrous oxide (N2O) emission from grassland. During cold and dry conditions in early spring, emission of N2O from both ammonium (NH 4 + ) and nitrate (NO 3 ) containing fertilizers applied to a clay soil were relatively small, i.e. less than 0.1% of the N applied. Emission of N2O and total denitrification losses from NO 3 containing fertilizers were large after application to a poorly drained sand soil during a wet spring. A total of 5–12% and 8–14% of the applied N was lost as N2O and via denitrification, respectively. Emissions of N2O and total denitrification losses from NH 4 + fertilizers and cattle slurry were less than 2% of the N applied. Addition of the nitrification inhibitor dicyandiamide (DCD) reduced N2O fluxes from ammonium sulphate (AS). However, the effect of DCD to reduce total N2O emission from AS was much smaller than the effect of using NH 4 + fertilizer instead of NO 3 fertilizer, during wet conditions. The greenhouse study showed that a high groundwater level favors production of N2O from NO 3 fertilizers but not from NH 4 + fertilizers. Inereasing calcium ammonium nitrate (CAN) application increased the emitted N2O on grassland from 0.6% of the fertilizer application rate for a dressing of 50 kg N ha–1 to 3.1% for a dressing of 300 kg N ha–1. In another experiment, N2O emission increased proportionally with increasing N rate. The results indicate that there is scope for reducing N2O emission from grasslands by choosing the N fertilizer type depending on the soil moisture status. Avoiding excessive N application rates may also minimize N2O emission from intensively managed grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号