首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
产气荚膜梭菌磷脂酶C的重组表达及其脱胶应用   总被引:2,自引:0,他引:2  
将产气荚膜梭菌(Clostridium perfringens)磷脂酶C(Cp-PLC)基因在大肠杆菌BL21(DE3)中进行了重组表达,并对重组Cp-PLC表达条件进行了优化。结果表明:当菌体生长至OD600为1.0时,添加8 g/L乳糖在30℃下诱导32 h,得到的重组Cp-PLC的酶活最大,为398.35 U/mL;重组Cp-PLC用于菜籽毛油脱胶的最佳条件为温度57℃、pH 5.0、加酶量600 U/kg、反应时间1.5 h;在最佳条件下,菜籽毛油的磷含量可降至5.66 mg/kg,能够满足物理精炼的要求。  相似文献   

2.
The objective of this study was to develop a model to predict the growth of C. perfringens from spores at temperatures applicable to the cooling of cooked cured meat products. C. perfringens growth from spores was not observed at a temperature of 12 °C for up to 3 weeks. The two parameters: germination, outgrowth, and lag (GOL) time and exponential growth rate, EGR, were determined using a function derived from mechanistic and stochastic considerations and the observed relative growths at specified times. A general model to predict the amount of relative growth for arbitrary temperature was determined by fitting the exponential growth rates to a square root Ratkowsky function, and assuming a constant ratio of GOL and generation times. The predicted relative growth is sensitive to the value of this ratio. A closed form equation was developed that can be used to estimate the relative growth for a general cooling scenario and determine a standard error of the estimate. The equation depends upon microbiological assumptions of the effect of history of the GOL times for gradual changes in temperature. Applying multivariate statistical procedures, a confidence interval was computed on the prediction of the amount of growth for a given temperature. The model predicts, for example, a relative growth of 3.17 with an upper 95% confidence limit of 8.50 when cooling the product from 51 to 11 °C in 8 h, assuming a log linear decline in temperature with time.  相似文献   

3.
目的 分析一起疑似由产气荚膜梭菌导致腹泻暴发事件的实验室检测结果,为产气荚膜梭菌食物中毒实验室检测策略的改进奠定基础。方法 采集暴发事件中4例病例肛拭子样本,应用荧光PCR方法检测肛拭子及其增菌液中cpa基因与cpe基因。对肛拭子样本进行产气荚膜梭菌分离培养,对部分分离单菌落进行产气荚膜梭菌毒力基因检测和脉冲场凝胶电泳(PFGE)分子分型。结果 4例病例样本中均检测到cpa基因和cpe基因。从病例1样本中挑取并鉴定为产气荚膜梭菌的18个单菌落中获得1个cpe+菌落,构成比为5.56%(1/18);从病例2样本中挑取并鉴定为产气荚膜梭菌的6个单菌落中获得1个cpe+菌落,构成比为16.7%(1/6);病例3未分离到cpe+菌落,病例4未分离到产气荚膜梭菌。11株产气荚膜梭菌菌株包括A型和C型两种,包含5种PFGE带型,分离自病例1和病例2的cpe+阳性菌株PFGE带型一致。结论 本次暴发事件可能由产气荚膜梭菌导致,综合使用各种实验室检测方法可在产气荚膜梭菌诊断标准滞后的情况下协助暴发事件分析。  相似文献   

4.
The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100–200 MPa, 7 min) and elevated temperature (80 °C, 10 min); spore germination at high temperatures (55, 60 or 65 °C); and inactivation of germinated spores with elevated temperatures (80 and 90 °C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 °C, 10 min). Low pressures (100–200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 °C, 10 min), and germinated at temperatures lethal for vegetative cells (≥55 °C) when incubated for 60 min with a mixture of l-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (∼4 decimal reduction) in meat by elevated temperatures (80–90 °C for 20 min) required a long germination period (55 °C for 60 min). However, similar inactivation level was reached with shorter germination period (55 °C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 °C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 °C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 °C in about 20 min and further incubation at 55 °C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 °C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C. perfringens.  相似文献   

5.
目的 建立针对水样中产气荚膜梭菌检测的TaqMan实时荧光定量聚合酶链式反应(PCR)方法,并测试该方法在自来水样中的检测效果。方法 选择位于该菌拟核中高度保守的plc基因,设计特异性引物和TaqMan探针,经优化后建立了针对该菌的TaqMan实时荧光定量PCR检测方法,结合滤膜法处理含有plc基因的标准菌株的模拟污染水样,并对所建立的方法进行测试。结果 所建立的产气荚膜梭菌TaqMan实时荧光定量PCR检测方法具有高度的特异性,13株食源性致病菌、3株艰难梭菌及1株腐败梭菌的Ct值大于40;该方法的最低检出限为1×10 copies/μL,具有较高的灵敏性;对模拟污染水样的最低检测限为1.0×102 CFU/mL。应用该方法对4份人工模拟污染阳性水样与90份自来水样进行检测发现,2份1.0×102 CFU/mL的模拟污染水样可检出产气荚膜梭菌,2份1.0×10 CFU/mL的模拟污染水样与90份自来水样均未检出产气荚膜梭菌。结论 所建立的产气荚膜梭菌TaqMan实时荧光定量PCR检测方法具有特异性好、灵敏性高的优点,对水体中产气荚膜梭菌的检...  相似文献   

6.
The contamination of enterotoxigenic Clostridium perfringens spores on food contact surfaces posses a serious concern to food industry due to their high resistance to various preservation methods typically applied to control foodborne pathogens. In this study, we aimed to develop an strategy to inactivate C. perfringens spores on stainless steel (SS) surfaces by inducing spore germination and killing of germinated spores with commonly used disinfectants. The mixture of l-Asparagine and KCl (AK) induced maximum spore germination for all tested C. perfringens food poisoning (FP) and non-foodborne (NFB) isolates. Incubation temperature had a major impact on C. perfringens spore germination, with 40 °C induced higher germination than room temperature (RT) (20 ± 2 °C). In spore suspension, the implementation of AK-induced germination step prior to treatment with disinfectants significantly (p < 0.05) enhanced the inactivation of spores of FP strain SM101. However, under similar conditions, no significant spore inactivation was observed with NFB strain NB16. Interestingly, while the spores of FP isolates were able to germinate with AK upon their adhesion to SS chips, no significant germination was observed with spores of NFB isolates. Consequently, the incorporation of AK-induced germination step prior to decontamination of SS chips with disinfectants significantly (p < 0.05) inactivated the spores of FP isolates. Collectively, our current results showed that triggering spore germination considerably increased sporicidal activity of the commonly used disinfectants against C. perfringens FP spores attached to SS chips. These findings should help in developing an effective strategy to inactivate C. perfringens spores adhered to food contact surfaces.  相似文献   

7.
Bacillus stearothermophilus spores ATCC 7953 can effectively be inactivated by high-pressure treatment, but only if it is applied at elevated temperatures; however, these temperatures are much lower compared to the temperature level used in heat inactivation under atmospheric pressure. Temperature and pressure in a range between 60 and 120°C and 50–600 MPa were applied to inactivate spores suspended in mashed broccoli and in cocoa mass. Utilizing an empirical mathematical model, derived from nth order kinetics, the survival curves of the spore strain investigated could be described accurately. The model can predict the impact of combined action of pressure and temperature on spore reduction. It was demonstrated that the inactivation of B. stearothermophilus spores ATCC 7953 improved with increasing treatment intensity. Beside intrinsic microbial inactivation mechanisms, the role of the pressure-induced shift in crystallization temperature of fat on spore inactivation in cocoa mass is discussed.  相似文献   

8.
The effect of nitrite and erythorbate on Clostridium perfringens spore germination and outgrowth in ham during abusive cooling (15 h) was evaluated. Ham was formulated with ground pork, NaNO2 (0, 50, 100, 150 or 200 ppm) and sodium erythorbate (0 or 547 ppm). Ten grams of meat (stored at 5 °C for 3 or 24 h after preparation) were transferred to a vacuum bag and inoculated with a three-strain C. perfringens spore cocktail to obtain an inoculum of ca. 2.5 log spores/g. The bags were vacuum-sealed, and the meat was heat treated (75 °C, 20 min) and cooled within 15 h from 54.4 to 7.2 °C. Residual nitrite was determined before and after heat treatment using ion chromatography with colorimetric detection. Cooling of ham (control) stored for 3 and 24 h, resulted in C. perfringens population increases of 1.46 and 4.20 log CFU/g, respectively. For samples that contained low NaNO2 concentrations and were stored for 3 h, C. perfringens populations of 5.22 and 2.83 log CFU/g were observed with or without sodium erythorbate, respectively. Residual nitrite was stable (p > 0.05) for both storage times. Meat processing ingredients (sodium nitrite and sodium erythorbate) and their concentrations, and storage time subsequent to preparation of meat (oxygen content) affect C. perfringens spore germination and outgrowth during abusive cooling of ham.  相似文献   

9.
Earlier studies on lactate-mediated colour stability in beef did not address the possible influence on cooked colour. Our objective was to examine the effect of lactate-enhancement, muscle source, and modified atmosphere packaging (MAP) on the internal cooked colour of beef steaks. Longissimus lumborum (LL) and Psoas major (PM) muscles from 16 (n = 16) beef carcasses (USDA Select) were randomly assigned to 4 enhancement treatments (non-injected control, distilled water-enhanced control, 1.25% and 2.5% lactate), and fabricated into 2.54-cm steaks. Steaks were individually packaged in either vacuum (VP), high-oxygen MAP (HIOX; 80% O2 + 20% CO2), or carbon monoxide MAP (CO; 0.4% CO + 19.6% CO2 + 80% N2), and stored for 0, 5, or 9 days at 1 °C. At the end of storage, surface and internal colour (visual and instrumental) was measured on raw steaks. Steaks were cooked to an internal temperature of 71 °C, and internal cooked colour (visual and instrumental) was evaluated. Lactate-enhancement at 2.5% level resulted in darker (P < 0.05) cooked interiors than other treatments. Interior cooked redness decreased (P < 0.05) during storage for steaks in VP and HIOX, whereas it was stable for steaks in CO. Our findings indicated that the beef industry could utilise a combination of lactate-enhancement and CO MAP to minimise premature browning in whole-muscle beef steaks.  相似文献   

10.
The effect of modified atmosphere packaging (MAP) on the germination and growth of toxin producing psychrotolerant Bacillus spp is not well described. A model agar system mimicking a cooked meat product was used in initial experiments. Incubation at refrigeration temperature of 8 °C for 5 weeks of 26 Bacillus weihenstephanensis including two emetic toxin (cereulide) producing strains showed that B. weihenstephanensis is sensitive to MAP containing CO2. The sensitivity to 20% CO2 was dependent on strain and oxygen level, being increased when oxygen was excluded from the MAP. Growth from spores was observed at the earliest within 2 weeks when 20% CO2 was combined with 2% O2 and in 3 weeks when combined with “0”% O2 (the remaining atmosphere was made up from N2). Results were validated in a cooked meat sausage model for two non-emetic and one emetic B. weihenstephanensis strain. The packaging film oxygen transfer rates (OTR) were 1.3 and 40 ml/m2/24 h and the atmospheres were 2% O2/20% CO2 and “0”% O2/20% CO2. Oxygen availability had a large impact on the growth from spores in the MAP meat sausage, only the most oxygen restricted condition (OTR of 1.3 ml/m2/24 h and “0”% O2/20 % CO2) inhibited growth of the three strains during 4 weeks storage at 8 °C. Cereulide production was undetectable during storage at 8 °C irrespective of choice of the MAP (quantified by liquid chromatography mass spectrometry/mass spectrometry). MAP storage at 8 °C for 1 and 3 weeks followed by opening of packages and temperature abuse for 1.5 h daily at 20 °C during 1 week resulted in increased cell counts and variable cereulide production in the meat sausage. A pre-history at 8 °C for 1 week in MAP with OTR of 1.3 or 40 ml/m2/24 h and 2% O2 resulted in cereulide concentrations of 0.816 – 1.353 µg/g meat sausage, while a pre-history under the most oxygen restricted condition (OTR of 1.3 ml/m2/24 h, “0”% O2/20 % CO2) resulted in minimal cereulide production (0.004 µg/g meat sausage) at abuse condition. Extension of MAP storage at 8 °C for 3 weeks followed by abuse resulted in a substantially reduced cereulide production.Data demonstrates that MAP can be used to inhibit growth of a psychrotolerant toxin producing Bacillus spp. during chill storage at 8 °C, and substantially reduce the risk of emetic food poisoning at abuse condition. Results are of relevance for improving safety of ready to eat processed chilled foods of extended durability.  相似文献   

11.
The European Directive on drinking water quality has included mCP agar as the reference method for recovering Clostridium perfringens from drinking waters. In the present study, three media (mCP, TSCF and CP Chromo Select Agar) were evaluated for recovery of C. perfringens in different surface water samples. Out of 139 water samples, using a membrane filtration technique, 131 samples (94.2%) were found to be presumptively positive for C. perfringens in at least one of the culture media. Green colored colonies on CP Chromo Select Agar (CCP agar) were counted as presumptive C. perfringens isolates.  相似文献   

12.
The objective of this study was to evaluate the combined effects of irradiation and carbon monoxide in modified atmosphere packaging (CO-MAP) on total plate counts, Escherichia coli K12, color, and odor of fresh beef during refrigerated storage. Beef was packaged aerobically or in CO-MAP, and irradiated at 0, 0.5, 1.0, 1.5 or 2.0 kGy then held at 4 °C for 28 days. Raw beef odor decreased and acid/sour, rancid and grassy odors increased starting on day 14. Initially, no difference existed for visual green color scores due to gas atmosphere. After 14 days of storage, aerobically packaged beef was greener and less red than CO-MAP packaged beef. The a∗ value of CO-MAP packaged beef was higher than that of aerobically packaged beef. Red color of CO-MAP packaged samples decreased slightly in some irradiated samples after 14 days of storage. On day 0 and thereafter, no coliforms were detect after irradiation at 1.5 or 2.0 kGy regardless of packaging format. These findings suggest that CO-MAP could be used to preserve beef color irradiated at doses sufficient to reduce microbial loads to safe levels during 28 days of storage.  相似文献   

13.
The effect of common defrosting practices of ground beef, including (i) defrosting in the refrigerator (5 °C for 15 h), (ii) defrosting at room temperature (25 °C for 12 h) and (iii) defrosting in the microwave, on the heat tolerance of artificially inoculated Listeria monocytogenes and Salmonella Enteritidis, was studied. The thermal inactivation of S. Enteritidis was not, overall, affected by defrosting practices. In contrast, defrosting at room temperature resulted, overall, in an increased heat tolerance of L. monocytogenes compared to the rest tested defrosting practices. Inactivation kinetics of the two pathogens for the different defrosting practices were determined by fitting the data to the Weibull model. The δ parameter of the Weibull model (heat challenge time (min) required for the first 1-log reduction) for S. Enteritidis and for defrosting at 25 °C, microwave defrosting, defrosting at 5 °C and for the control (fresh ground beef inoculated with the pathogens just before the heat challenge trials) was 1.13, 1.62, 1.60 and 0.96, respectively, while the corresponding values for L. monocytogenes were 20.13, 10.82, 9.95 and 9.47, respectively. The findings of this study should be useful in risk assessments and in developing food handling guidelines for the consumers.  相似文献   

14.
The aim of this study was to design a thermal treatment(s) for pork luncheon roll, which would destroy Bacillus cereus and Clostridium perfringens vegetative cells and spores. B. cereus and C. perfringens vegetative and spore cocktails were used to inoculate luncheon meat. Samples were subjected to different temperatures and removal times. The decimal-reduction times (D-values) were calculated by linear regression analysis (D = -1/slope of a plot of log surviving cells versus time). The log(10) of the resulting D-values were plotted against their corresponding temperatures to calculate (-1/slope of the curve) the thermal resistance (z-values) of each cocktail. The D-values for vegetative cells ranged from 1 min (60 degrees C) to 33.2 min (50 degrees C) for B. cereus and from 0.9 min (65 degrees C) to 16.3 min (55 degrees C) for C. perfringens. The D-values for B. cereus spores ranged from 2.0 min (95 degrees C) to 32.1 min (85 degrees C) and from 2.2 min (100 degrees C) to 34.2 min (90 degrees C) for C. perfringens. The z-values were calculated to be 6.6 and 8.5 degrees C for B. cereus vegetative and spores, respectively, and 7.8 and 8.4 degrees C for C. perfringens vegetative cells and spores, respectively. The D-values of B. cereus and C. perfringens suggest that a mild cook of 70 degrees C for 12s and 1.3 min would achieve a 6 log reduction of B. cereus and C. perfringens vegetative cells, respectively. The equivalent reduction of B. cereus and C. perfringens spores would require the pork luncheon meat to be heated for 36 s at 105 and 110 degrees C, respectively. The results of this study provide the thermal inactivation data necessary to design a cooking protocol for pork luncheon roll that would inactivate B. cereus and C. perfringens vegetative cells and spores. The data may also be used in future risk assessment studies.  相似文献   

15.
The whole cell protein and macrorestriction analysis of DNA of Enterobacteriaceae isolates recovered from minced beef stored at 0, 5, 10 and 15 °C aerobically and under modified atmosphere packaging consisting of 40% CO2-30% O2-30% N2 in the presence (MAP+) and absence (MAP−) of oregano essential oil were studied. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiles obtained from whole cell protein analysis of the Enterobacteriaceae isolates revealed seven groups. Moreover, application of a modified PFGE protocol with XbaI restriction, resulted into 19 different fingerprints. The Enterobacteriaceae community of fresh meat consisted of Serratia liquefaciens and Serratia proteamaculans. S. liquefaciens strain VK23 was the dominant isolate of Enterobacteriaceae for the most conditions adopted, except 10 °C and 15 °C under MAP + and 10 °C under MAP−. In the latter cases, Hafnia alvei represented the dominant fingerprint. Citrobacter freundii was recovered from minced beef stored aerobically, while H. alvei and Proteus vulgaris were recovered under MAP. Storage conditions affected the Enterobacteriaceae community; modified atmosphere packaging increased both species and strain diversity.  相似文献   

16.
This study evaluated the effects of various polyphosphates (SPP, STPP, SAPP and TSPP) on growth, sporulation and spore germination of Clostridium perfringens, and germination and outgrowth of C. perfrinegns spores in poultry meat. We have found that the requirements of polyP (0.8–1.0%) to inhibit C. perfringens bacterial growth were higher than those reported for other bacteria. Sub-lethal concentrations of polyP significantly (p<0.01) inhibited sporulation of C. perfringens by reducing sporulating cells (heat-resistant cells) 5–6 log10. While C. perfringens spores were able to germinate in the presence of 1% STPP, their outgrowth was significantly (p<0.01) inhibited. Finally, a significant (p<0.01) reduction of survival of C. perfringens was observed when meat samples contaminated with a cocktail of spores of C. perfringens isolates carrying enterotoxin gene on the chromosome were treated with 1% STPP. Collectively, this study demonstrated the inhibitory effects of polyP on growth, sporulation and spore outgrowth of C. perfringens, and suggests that polyP can be used not only as an enhancer of the functional properties of meat products, but also as a promising C. perfringens antimicrobial agent.  相似文献   

17.
This research investigated the efficacy of gaseous ozone for the inactivation of Escherichia coli ATCC 25922 and NCTC 12900 strains in orange juice. Orange juice inoculated with E. coli (106 CFU mL− 1) as a challenge microorganism was treated with ozone at 75–78 µg mL− 1 for different time periods (0–18 min). The efficacy of ozone for inactivation of both strains of E. coli was evaluated as a function of different juice types: model orange juice, fresh unfiltered juice, juice without pulp, and juice filtered through 500 µm or 1 mm sieves. Fast inactivation rates for total reduction of E. coli were achieved in model orange juice (60 s) and in juice with low pulp content (6 min). However, in unfiltered juice inactivation was achieved after 15–18 min. This indicated that juice organic matter interferes with antibacterial activity of gaseous ozone. The effect of prior acid (pH 5.0) exposure of E. coli strains on the inactivation efficacy of ozone treatment was also investigated. There was a strain effect observed, where prior acid exposure resulted in higher inactivation times in some cases by comparison with the control cells. However, the overarching influence on inactivation efficacy of ozone was related to the pulp content. Generally, the applied gaseous ozone treatment of orange juice resulted in a population reduction of 5 log cycles.

Industrial relevance

To facilitate the preservation of unstable nutrients many juice processors have investigated alternatives to thermal pasteurisation, including un-pasteurised short shelf life juices with high retail value. This trend has continued within the European Union. However within the US recent regulations by the FDA have required processors to achieve a 5-log reduction in the numbers of the most resistant pathogens in their finished products. Pathogenic E. coli may survive in acid environments such as fruit juices for long periods. This study demonstrates that the use of ozone as a non-thermal technology is effective for inactivation of E. coli and acid exposed E. coli in orange juice. Information on the design of the ozone treatment for inactivation of E. coli which results into safe juice products is also among the main outputs of this work. Ozone auto-decomposition makes this technology safe for fruit juice processing.  相似文献   

18.
The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.  相似文献   

19.
In this study, the susceptibility of two stored-product insects, Ephestia kuehniella and Tribolium confusum, to gaseous ozone was investigated. Two ozone fumigation methods were used, an empty space fumigation with only one flush of ozone treatment held for 2 h, and a reflush ozone treatment at 30-min intervals for 5 h in the presence of 2 kg wheat, with an initial ozone concentration of 13.9 mg/L. Toxicity data for empty space ozone treatments indicated a remarkable difference in susceptibility between the life stages of E. kuehniella and T. confusum. For E. kuehniella, empty space ozone treatment resulted in complete mortality of adults, pupae and larvae, while only 62.5% of the eggs were killed. For T. confusum, ozone treatment resulted in very low mortality of adults, pupae and eggs, ranging from 4.2 to 14.1% while only larvae had a high mortality (74%). Generally T. confusum was more tolerant to ozone treatment than E. kuehniella. Ozone flush treatment at 30-min intervals for 5 h resulted in almost complete mortality of all life stages of E. kuehniella placed in the top position of 2 kg wheat, whereas eggs of E. kuehniella placed in the bottom position of 2 kg wheat were hard to kill. For T. confusum, larvae placed in the bottom position of 2 kg wheat were easily killed, whereas eggs, pupae and adults survived.  相似文献   

20.
The influence of a commercial chilling process (18 h at 10 °C followed by up to 78 h at 2 °C) on Pseudomonas fluorescens inoculated on beef carcass surfaces at four sites, neck (NE), outside round (OR), brisket (BR) and foreshank/brisket (FB) before chilling (“hot inoculated”) or after chilling for 24 h (“cold inoculated”) was investigated. Pseudomonas counts increased significantly at all sites on “hot inoculated” carcasses during storage, but on “cold inoculated” carcasses, counts declined or remained unchanged. On hot and cold inoculated carcasses, differences in Pseudomonas growth or survival were demonstrated between sites. No clear relationships were observed between Pseudomonas growth or survival and chiller relative humidity (RH) or surface water activity (aw) at the different sites. These results were unexpected, and are discussed in relation to environmental factors that affect the growth/survival of P. fluorescens on carcass surfaces during chilling i.e. temperature, RH, and the relationship of these parameters to surface water activity (aw).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号