共查询到3条相似文献,搜索用时 2 毫秒
1.
An Euler/Navier-Stokes zonal scheme is developed to numerically simulate the two-dimensional flow over a blunt leading-edge plate. The computational domain has been divided into inner and outer regions where the Navier-Stokes and Euler equations are used, respectively. On the downstream boundary, compatibility conditions derived from the boundary-layer equations are used. The grid is generated by using conformal mapping and the problem is solved by using a compressible Navier-Stokes code, which has been modified to treat Euler and Navier-Stokes regions. The accuracy of the solution is determined by the reattachment location. Bench-mark solutions have been obtained using the Navier-Stokes equations throughout the optimum computational domain and size. The problem is recalculated with sucessive decrease of the computational domain from the downstream side where the compatibility conditions are used, and with successive decrease of the Navier-Stokes computational region. The results of the zonal scheme are in excellent agreement with those of the benchmark solutions and the experimental data. The CPU time saving is about 15%. 相似文献
2.
The development of Jacobian-free software for solving problems formulated by nonlinear partial differential equations is of increasing interest to simulate practical engineering processes. For the first time, this work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation of flows in porous media. The model considered here is the one employed to describe the displacement of miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid mixture varies exponentially with the pressure. This spectral algorithm is a modern method for solving large-scale nonlinear systems, which does not use any explicit information associated with the Jacobin matrix of the considered system, being a Jacobian-free approach. Two dimensional problems are presented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable and efficient method for simulation of compressible flows in porous media. 相似文献
3.
David Uystepruyst Mame William-Louis Emmanuel Creusé Serge Nicaise François Monnoyer 《Computers & Fluids》2011,47(1):165-177
The topic of this paper is to present a new methodology for the three-dimensional numerical simulation of the entrance of high-speed trains in a tunnel. The movement of the train is made thanks to a technique of sliding meshes and a conservative treatment of the faces between two domains. All parts of the development are thought with the aim to reduce the computational time. In particular, non-reflecting boundary conditions for non-structured three-dimensional meshes are developed in order to limit the calculation domain. Validations of the methodology are presented on different test cases. 相似文献