首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为了研究350 km/h 高速列车运行状态下噪声随距离衰减规律,对已开通运行的京津城际铁路列车运行时辐射噪声进行测试与分析,得出京津城际铁路噪声随距离衰减规律。结果表明,在高架桥路段(桥墩高6 m),距离60 m处噪声达到最大,在60 m以后,噪声开始衰减明显。其研究结果对今后高速铁路降噪设计具有一定的参考价值。  相似文献   

2.
为了考察350 km/h高速列车运行状态下高架桥的环境振动水平,对京津城际铁路杨村特大桥247号桥墩高速列车运行时的环境振动进行测试,分析了高架桥环境振动的衰减特性。结果表明,VL zmax、VL z10和VLzeq随距离的变化均符合对数衰减规律,距离振源30 m内环境振动衰减明显,距离振源30 m以后衰减逐渐平缓。在距离振源15 m~60 m范围,我国现行的高速铁路环境振动预测公式的预测值最大偏高9.7 %。  相似文献   

3.
为了考察350 km/h高速列车运行状态下不同线路形式处的噪声水平,对已开通运行的京津城际铁路某车站北京端处路基、桥梁、路桥过渡段列车运行时辐射噪声进行测试与分析,得出京津城际铁路不同线路形式处的噪声强度。结果表明,在路基、桥梁、路桥过渡段三种线路形式中,列车通过桥梁段所产生的噪声最小,通过路桥过渡段产生的噪声最大,其研究结果对今后高速铁路降噪设计具有一定的参考价值。  相似文献   

4.
为确定京津城际铁路地震预警系统地震仪的触动阀值,在高速列车通过时,对京津城际铁路桥墩基础场地进行了振动测试,并采用最小二乘法及频谱分析获得了桥墩附近场地的振动加速度衰减规律及其频率特性。结果表明,振动加速度幅值在距离桥墩10 m范围内衰减很快,且垂直向衰减比水平向快,超过10 m范围后,衰减变缓,水平向与垂直向的振动幅值衰减接近;在桥墩附近,加速度水平向及垂直向主振频率分别为37 Hz和41 Hz,远高于理论预测值;距桥墩70 m处安置的地震仪不会被触发。  相似文献   

5.
为了解海南东环铁路运行的噪声影响情况和规律,对已投入运行的海南东环铁路的海口段进行现场测量,得出列车运行期间的噪声随距离增加并不呈线声源衰减特性;在城区,对在没有行道树情况下运行的列车进行监测,得出行道树对轨道交通的降噪作用很明显;在列车运行线路周边,对不同楼层的噪声进行监测,得出不同楼层间的受噪声影响规律。最后对未来小时列车次数加密后的噪声进行预测。  相似文献   

6.
针对某城际快铁高架桥列车运行引起的附近自由场地环境振动进行现场测试。结果表明,在近场测点,加速度时程呈明显列车周期性加载现象;随距离的增加,振动快速衰减,并在7.5 m处有反弹增大现象;距线路越远,振动衰减越慢,地面振动加速度级随距离的变化满足对数关系;高架轨道交通引起的地面横向水平振动加速度级较竖向大3.9~9.0 dB;地面竖向振动优势频率范围10~100 Hz,横向振动频率主要在4~100 Hz,低频振动较高频振动传播距离更远;双线高架桥引起的环境振动偏载效应突出;振动加速度级随车速的变化规律为0.036~0.049 dB/(km·h-1)。  相似文献   

7.
为研究CRTS III型板式无砟轨道环境振动特点,对成灌铁路某桥梁段地面振动进行现场测试,分析不同测点地面振动加速度时程特点、频谱特征,并进行1/3倍频程分析和Z振级的衰减分析。结果表明,列车以180 km/h速度通过时,地面振动持续时间约6 s,距线路中心10 m处振动峰值加速度为60 mm/s2;在10 m处振动频谱分布范围在20~90 Hz,高频振动随距离衰减更快,大于20 m处振动主要以15~45 Hz为主;地面振动Z振级的衰减符合对数衰减规律。  相似文献   

8.
以某城市轨道交通高架低矮弧形声屏障作为研究对象,分别选取有、无声屏障断面,开展列车通过时的噪声测试;基于有限元法、边界元法和统计能量分析法,建立轨道交通高架综合噪声预测模型并进行了试验验证。基于测试结果和预测结果,研究了城市轨道交通高架噪声的空间分布规律,分析了低矮弧形声屏障的降噪特性,探讨了低矮弧形声屏障对梁侧噪声分布的影响。研究结果表明:在无声屏障断面的情况下,轨面以下测点主要受低频桥梁结构噪声的影响,噪声随距离的衰减速度较慢,距离每增大一倍,噪声衰减约2.44 dB(A);轨面以上测点主要受高频轮轨噪声影响,噪声随距离的衰减速度较快,距离每增大一倍,噪声衰减约5.68 dB(A);低矮弧形声屏障对中高频噪声具有较好的降噪效果,但增大了低频噪声,这可能是由于声屏障的二次结构噪声辐射所导致的;低矮弧形声屏障在距离线路中心线7.5 m, 25 m处的插入损失分别约为5~8 dB(A)和2~6 dB(A);低矮弧形声屏障在梁侧插入损失约为4~6 dB(A),由于声屏障振动辐射二次结构噪声,桥梁跨中断面局部区域噪声增大。  相似文献   

9.
结合成灌快铁高架桥梁的噪声试验,对高架桥梁附近的噪声传播规律进行研究。实测结果表明:桥梁结构噪声以低频为主,采用线性计权进行评价更为合适;实测高架桥梁附近的噪声在100 Hz以下和800 Hz附近出现噪声峰值,前者主要为桥梁结构噪声;桥梁结构噪声主要集中在桥梁斜下方一定区域,且随横向距离的衰减较慢。将实测结果与建立的噪声简化预测模型进行比较,二者吻合较好,预测模型较好地反映了快速铁路高架桥梁附近的声场分布。  相似文献   

10.
列车运行噪声传播规律的研究   总被引:3,自引:1,他引:3  
对客货列车运行稳态辐射噪声的传播特性进行了试验研究。通过分析列车运行试验数据 ,得出列车运行噪声在一般传播条件下几何衰减特性及噪声强度与运行速度的定量关系方程  相似文献   

11.
为了评估高速列车运行时对轨道周围环境的噪声污染程度,对高速列车以不同速度工况通过时的车外辐射噪声(称为"通过噪声")进行了测试,得到了以最大A声级和1/3倍频程A声级标志的列车通过噪声的测量数据。分析了通过噪声的频谱特性、及其与列车速度的关系。测试数据表明高速列车通过噪声是宽频噪声,最大A声级在标准规定测试点上的值达到约90 dB,对铁路附近的噪声污染比较大;通过噪声随着列车速度增大而增大,在时速370 km以上增幅变大。  相似文献   

12.
气动降噪控制对高速列车运行环保性和乘坐舒适性至关重要.以某时速400 km高速列车1∶8缩比模型为研究对象,建立了基于转向架舱前缘、侧缘、后缘3种策略的6种气动降噪控制方案.通过大涡模拟得到非定常流场和气动噪声源项,采用FW-H方程和声扰动方程计算远场和近场噪声,得到不同控制方案对远场噪声、近场噪声的控制效果和影响频域...  相似文献   

13.
建立高速列车车厢连接处简化的气动噪声分析模型,基于声类比理论、FLUENT软件分析车厢连接处形状及风挡对气动噪声影响,给出车外气动噪声分布规律。数值结果表明,对近车厢连接处端部进行圆角光顺能减小气动噪声值。圆角半径越大减噪效果越明显;在车厢连接部位安装风挡能减小车外及车厢连接内部空腔的气动噪声,风挡开口处的气动噪声值有所增加。对风挡板进行圆角光顺可进一步减弱气动噪声。  相似文献   

14.
为降低高速列车运行时的车厢内低频噪声,研究了车厢内大范围区域的噪声主动控制问题.针对高速列车运行实测噪声频谱与目标降噪区域尺寸(1.8 m×2.5 m×1.3 m),设计48通道的前馈主动控制系统.按照比较匀称的排列方式,次级声源布放在车厢内除底部的其余5个面上,误差点分布在目标区域.通过测量各声学路径传递函数,离线计...  相似文献   

15.
振动是高速铁路高架车站运营期的主要环境污染。为考察300 km/h高速列车运行状态下高架车站的环境振动水平,对我国第一座投入使用的高速铁路高架车站—郑西高速铁路渭南北站候车室内外、车站郑州端内部以及车站外高架桥的环境振动水平进行测试,初步分析高架车站环境振动的特点。结果表明,车站内环境振动的垂向振级大大高于水平向振级,车站内的环境振动水平远低于车站外的环境振动水平,渭南北高架站所采取的减振措施是有效的。  相似文献   

16.
为了评价V型声屏障的降噪效果,通过试验及预测相结合的方法对低载荷V型声屏障进行研究。首先对V型声屏障进行实验室隔声性能测试,结果显示其计权隔声量比直立型声屏障小23.8 dB,隔声性能较差。而高速列车车外噪声声源有其本身的源强分布特性。为预测实际列车运行下V型声屏障降噪效果,通过线路测试识别出高速列车声源空间分布特征,确定预测模型声源,对声屏障总降噪效果进行预测分析。结果表明,V型声屏障针对实测高速列车车外噪声降噪效果显著,相对直立声屏障而言,约降低1 dBA左右;针对轮轨区域声源,V型声屏障的降噪效果降低4 dBA左右,尤其是在500 Hz、1 250 Hz和2 000 Hz频率处降噪效果最好。  相似文献   

17.
研究借助气动-声学风洞试验平台,首先针对某高速列车的1:8缩尺比例的三车编组模型建立了气动噪声试验方法和突显不同的噪声源的模型处理方法,并结合流场外自由场传声器和传声器阵列的测量结果,分析了模型上的主要噪声源特性及对整个模型的贡献量大小。研究表明:转向架和受电弓噪声是模型的最主要噪声源,其次是车连接部位间隙,再次是鼻尖和排障器,最后是尾车,同时,并给出了这些噪声源的特性,这对于认识高速列车气动噪声和改善设计有重要的参考价值。研究也说明所提出的试验研究方法是一种研究高速列车气动噪声较为有效地方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号