首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(13):18021-18034
Air plasma sprayed thermal barrier coatings (TBCs) are widely used in gas turbines to provide thermal insulation for the metallic engine components. During service, the multi-layered and multi-material systems undergo thermal and mechanical degradation. The degradation mechanisms include sintering, phase transformation, residual stress, oxidation, erosion and CMAS attack. The degradation leads to the initiation and propagation of cracks at or near the interface between the topcoat and bond coat, eventually merging into large-scale delamination and resulting in failure of the TBCs. Recent progress in the development of methods for mitigating the detrimental impact of these failure mechanisms via composition and processing modifications has been reviewed. Meanwhile, the applications of newly-emerging materials with superior properties have also been discussed. The review emphasises the relationships between composition, microstructure and properties of TBCs, which is beneficial for the exploration of the advanced TBCs with higher durability.  相似文献   

2.
The thermal cycling lifetime of thermal barrier coatings was doubled when deposited by electro-sprayed (ESP) microspheres instead of by commercial hollow spherical powders. It was believed that partial-molten nodules with featured microstructures inherited from the feedstock microspheres were the main contributor for prolonged thermal cycling durability due to improved fracture toughness and strain tolerance. The maximum lifetime was observed on samples with 20?30 vol.% of partial-molten microspheres. The hierarchy pores may both slow down the crack propagation by triggering multi-deflecting and promote cracking by reducing the tendency of interfacial deflection, the net effect depends on situation. The ESP coatings exhibited bimodal Weibull moduli upon indentation, which was regarded as originated from the hierarchy porous structure. Finally, the criterion was verified by micro-indentation and residual stain-stress evaluation by Raman spectroscopy.  相似文献   

3.
The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of phase composition, phase structure and thermal conductivity of such coatings with annealing at 1300?°C has been investigated. The results show that, a single pyrochlore structure can be retained for coating after annealing up to 48?h, beyond which the fluorite phase begins to precipitate out. By comparing thermal conductivities to those undoped counterparts at a similar porosity level, we find a considerably flat thermal conductivity versus temperature (k-T) curve, suggesting the existence of a strong phonon scattering source, which is inferred as rattlers. In addition, after the segmentation of the fluorite phase, the thermal conductivity of corresponding coatings rises considerably, indicating that the fluorite phase has a higher thermal conductivity than that of pyrochlore phase. Moreover, while the as-sprayed coatings show a clear indication of radiative thermal conduction beyond 1000?°C, the thermal conductivity of annealed coatings do not show such an uprising trend after 1000?°C, suggesting that the radiative thermal conduction has been greatly suppressed. The reason is proposed as the formation of local dipoles due to local enrichment of certain elements influences the propagation of electromagnetic waves and thus suppresses the radiative thermal conduction.  相似文献   

4.
《Ceramics International》2016,42(12):13876-13881
High temperature gas turbine sealing can increase the thermal efficiency of a gas turbine. In this paper, monoclinic phase YTaO4 ceramics were fabricated via solid-state reaction. Phase composition and microstructures of the high-temperature-sintered YTaO4 ceramics were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman Spectroscopy. Specific heat capacity rose gradually as temperature increased, due to volumetric expansion and phonon excitations. The thermal diffusivities and conductivities decreased significantly due to the effects of the porosity and phonon scattering. However, the thermal conductivities of the specimens were lower than that of 7–8 wt% yttria-stabilized zirconia (7-8YSZ), and YTaO4 ceramics have better thermal stability than current (TBCs) material. The Vickers hardnesses of YTaO4 ceramics as a function of sintering temperature were lower than that of 8YSZ, indicating YTaO4 has better fracture toughness and thermal tolerance. The results demonstrate that YTaO4 ceramics would be an excellent candidate for use as a thermal barrier coating material for high temperature gas turbines.  相似文献   

5.
In this study, Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bond coat and then with a ceria and yttria stabilized zirconia (CYSZ) top coat by air plasma spraying (APS). After that, the plasma sprayed CYSZ thermal barrier coatings (TBCs) were treated using a Nd:YAG pulsed laser. The effect of laser glazing on the microstructure of the coatings was investigated. The microstructures and surface topographies of both as-sprayed and laser glazed samples were investigated using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The phases of the coatings were analyzed with X-ray diffractometry (XRD). The microstructural analysis results revealed that laser surface glazing of ceramic top coat reduced the surface roughness considerably, eliminated the surface porosities and produced a network of continuous cracks perpendicular to the surface. XRD patterns also showed that both as-sprayed and laser glazed top coats consisted of nonequibrium tetragonal (T′) phase.  相似文献   

6.
The main goal of this paper was to evaluate and compare the microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). To this end, NiCrAlY bond coat, nanostructured, and conventional YSZ coatings were deposited on Inconel 738LC substrate by atmospheric plasma spraying (APS). The mechanical properties of the coating were evaluated using nanoindentation and bonding strength tests. The microstructure and phase composition of the coating were characterized by field emission scanning electron microscopy (FESEM) and X-ray diffractometry (XRD). The nanostructured YSZ coating contained both nanosized particles retained from the powder and microcolumnar grains formed through the resolidification of the molten part of the powder, whereas the microstructure of the conventional YSZ coating consisted of columnar grain splats only. The phase composition of the as-sprayed nanostructured coating consisted of the non-transformable tetragonal phase, while the conventional coating showed the presence of both the monoclinic and non-transformable tetragonal phases. The results of nanoindentation and bonding strength tests indicated that the mechanical properties of the nanostructured coating were better than those of the conventional coating.  相似文献   

7.
Rare-earth doped yttria-stabilized zirconia (YSZ) coatings with lower thermal conductivity have been fabricated via suspension plasma spray by dissolving rare-earth nitrates into YSZ powder-ethanol suspensions prior to plasma spraying. The effect of dopant concentration and dopant type on properties of the coatings was determined by comparing two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd2O3/Yb2O3, Nd2O3/Gd2O3, and Gd2O3/Yb2O3). The porosity content of the coating was found to increase with increased total rare-earth dopant concentration but did not significantly change with dopant pairs. The cross-sectional morphology of every coating displayed a cauliflower-like structure. However, the most heavily doped coating exhibited a larger surface roughness and feathery features in the columnar structures. The thermal conductivity measurement showed that the thermal conductivity decreased with increased Nd2O3/Yb2O3 concentration. Among coatings containing different dopant pairs, the Gd2O3/Yb2O3 doped coating exhibited lowest conductivity.  相似文献   

8.
《Ceramics International》2019,45(15):18471-18479
Suspension plasma spraying (SPS) as a relatively new spraying technology has great potential on depositing high performance thermal barrier coatings (TBCs). In some cases, however, columnar SPS TBCs show premature failure in thermal cycling test. To explain the reasons of such failure, a failure mechanism for columnar SPS TBCs was proposed in this work. The premature failure of TBCs might be related to the radial stresses in the vicinity of top coat/bond coat interface. These radial stresses were introduced by the thermal misfit and the roughness of bond coat. According to this mechanism, two architecture designs of SPS TBCs were applied to improve the thermal cycling lifetime. One was a double layered top coat design with a lamellar atmospheric plasma sprayed (APS) sub-layer and a columnar SPS top-layer. The other one was a low roughness bond coat design with a columnar SPS top coat deposited on a low roughness bond coat which was grinded before the spraying. With both designs, lifetimes of SPS TBCs were significantly extended. Especially, a lifetime even better than conventional APS TBCs was achieved with the double layered design.  相似文献   

9.
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating.  相似文献   

10.
《Ceramics International》2016,42(13):14299-14312
As one of the promising methods that can be employed to fabricate high-performance thermal barrier coatings (TBCs), suspension plasma spraying (SPS) or solution precursor plasma spraying (SPPS) has received significant attention in academic research. Enhanced performances have been shown in the SPS-/SPPS-coatings due to their special microstructures, such as uniformly distributed micro-pores, vertical cracks or columnar structures. Since there are more complexities than conventional plasma spraying methods, many works have been devoted to study the mechanism and properties of SPS-/SPPS-coatings during the past decades. In this work, the latest development of SPS or SPPS is reviewed in order to discuss some key issues in terms of preparation of suspension or solution precursor, injection mode of liquid phase, interaction between liquid and plasma jet, microstructure of as-sprayed coatings and corresponding deposition mechanism. Meanwhile, the potential application of SPS or SPPS in some new-type TBCs is introduced at the end of this paper.  相似文献   

11.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   

12.
In this study, nanostructured and conventional Yb2SiO5 coatings were prepared by atmospheric plasma. The microstructure and nanomechanical properties of these coatings were compared before and after heat treatment. The results show that the nanostructured Yb2SiO5 coatings have a mono-modal distribution, and the conventional Yb2SiO5 coatings have a bimodal distribution. Both types of coatings had improved nanomechanical properties after heat treatment. However, the increased elastic modulus and nanohardness of the nanostructured Yb2SiO5 coating were more apparent than those of the conventional Yb2SiO5 coatings. The nanostructured Yb2SiO5 coating had a higher elastic modulus than the conventional Yb2SiO5 coating, reflecting its high density. Subsequently, the microscopic morphology and micromechanical properties of the coatings were analyzed after heat treatment. Defects in the coatings, including pores, and microcracks, were significantly reduced with grain growth after thermal treatment, and the nanostructured Yb2SiO5 coatings had improved healing ability and micro-mechanical properties.  相似文献   

13.
In this study, ytterbium silicate coatings with different compositions were designed by controlling the Yb2O3/ SiO2 ratio and fabricated by atmospheric plasma spray. The microstructure and thermal properties of these coatings were characterized. Results showed that the Yb2O3-rich coatings contained Yb2O3 and Yb2SiO5 phases, which were characterized by Yb2O3 columnar grains, obvious interfaces between splats and many microcracks. The SiO2-rich coatings were composed of Yb2SiO5 and Yb2Si2O7 phases, which were composed of well bonded splats with many spherical pores. The Yb2O3-rich coatings had higher coefficient of thermal expansion values and lower thermal conductivities than the SiO2-rich coatings. The SiO2-rich coatings presented much better thermal cycling resistance than the Yb2O3-rich coatings. The relationship among phase composition, microstructure and thermal properties of ytterbium silicate coatings was analyzed. The results of this study may provide some clues for designs and applications of rare-earth silicates as environmental barrier coatings.  相似文献   

14.
《Ceramics International》2017,43(13):9600-9615
Nanostructured thermal barrier coatings (TBCs) are being widely researched for their superior thermal barrier effect and strain compliance. However, the sintering occurs inevitably in nanostructured TBCs that comprise both nanozones and lamellar zones, although the mechanism of sintering in such bimodal coatings is not yet clear. This study investigates the changes in microstructure and properties of nanostructured TBCs during thermal exposure with the aim to reveal the sintering mechanism operative in these coatings. Results show that the sintering process occurs in two stages. It was found that in the initial shorter stage (~0–10 h), the properties increased rapidly; moreover, this change was anisotropic. The main structural change was the significant healing of the intersplat pores through multiconnection. During the subsequent longer stage, the change in the properties was much smaller, where it was observed that the pores continued to heal, albeit at a much lower rate. Furthermore, the faster densification of the nanozones induced during sintering became significant, resulting in an opening at the interface between the nanozones and the lamellar zones. In brief, the pore healing at the lamellar zones affects the properties, especially in the initial stage. The presence of nanozones has a positive effect in that the performance degradation during the overall thermal exposure is slowed down. An understanding of this competing sintering mechanism would enable the structural tailoring of nanostructured TBCs in order to increase their thermal insulation and thermal cycling lifetime.  相似文献   

15.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

16.
A combination of characterization techniques has been used to provide new understanding of the complex crystallization behavior of as-sprayed amorphous Yb2Si2O7-based air-plasma-sprayed environmental barrier coatings (EBCs). During crystallization heat-treatment, initially a mixture of metastable α-Yb2Si2O7 and X1-Yb2SiO5 phases form, along with stable β-Yb2Si2O7 and X2-Yb2SiO5 phases. Eventually the metastable phases transform to the stable β-Yb2Si2O7 (major) and X2-Yb2SiO5 (minor) phases. The significant volume expansion associated with these transformations partially contributes towards the anomalous expansion measured in these EBCs after crystallization, but it does not account for all the measured expansion. In this context, in similar EBCs, it is also observed that the porosity increases upon crystallization heat-treatment, primarily in the form of thin, interconnected pores, which also contributes to the measured anomalous expansion. Based on this understanding, guidelines are provided for ‘near-net-shape’ crystallization of phase-pure, dense β-Yb2Si2O7 EBCs that are free of vertical cracks.  相似文献   

17.
《Ceramics International》2022,48(22):32877-32885
CaO–MgO–Al2O3–SiO2 (CMAS) deposition significantly degrades the performance of thermal barrier coatings (TBCs). In this study, the microstructure evolution of CMAS glass at temperatures below its melting point was investigated in order to study the potential influence of temperature on the applicability of CMAS glass in TBCs. The CMAS glass fabricated in this study had a melting point of 1240 °C, became opaque, and underwent self-crystallization when the temperature reached 1000 °C. After heat treatment at 1050 °C, diopside and anorthite phases precipitated from the glass; at a higher temperature (1150 °C), diopside, anorthite, and wollastonite were formed as the self-crystallization products. An increase in the dwelling time resulted in the transformation of diopside to wollastonite and anorthite. At 1250 °C, all products formed a eutectic microstructure and melted. The results indicate that even at low temperatures, CMAS glass underwent microstructure evolution, which could influence the coating surface and stress distribution when deposited on TBCs.  相似文献   

18.
Yb2SiO5 (ytterbium monosilicate) top coatings and Si bond coat layer were deposited by air plasma spray method as a protection layer on SiC substrates for environmental barrier coatings (EBCs) application. The Yb2SiO5-coated specimens were subjected to isothermal heat treatment at 1400 °C on air for 0, 1, 10, and 50 h. The Yb2SiO5 phase of the top coat layer reacted with Si from the bonding layer and O2 from atmosphere formed to the Yb2Si2O7 phase upon heat treatment at 1400 °C. The oxygen penetrated into the cracks to form SiO2 phase of thermally grown oxide (TGO) in the bond coat and the interface of specimens during heat treatment. Horizontal cracks were also observed, due to a mismatch of the coefficient of thermal expansion (CTE) between the top coat and bond coat. The isothermal heat treatment improves the hardness and elastic modulus of Yb2SiO5 coatings; however, these properties in the Si bond coat were a little bit decreased.  相似文献   

19.
《Ceramics International》2020,46(14):21939-21957
Thermal conductivity of various porous thermal barrier coatings (TBCs) used at elevated temperatures for gas turbines has been evaluated using the proposed six-phase model. These TBCs rely on microstructural properties and yield different types of porosities. This paper studies the thermal conductivity of TBCs based on microstructural features to evaluate the effect of different types of porosities on thermal conductivity. The first part of this paper investigates the microstructural characterization of various TBCs using image analysis (IA) technique. The second part of this paper evaluates the thermal conductivity using the image analysis. The volumetric fraction of porosities along with their orientation, shape and morphology, shows a considerable impact on the overall thermal conductivity of TBCs. The proposed six-phase model can predict thermal conductivity of porous TBCs with a good agreement with the measured values. The model results can help to better understand the effect of microstructural changes on thermal conductivity and can provide useful guide to fabricate TBCs with low thermal conductivity.  相似文献   

20.
《Ceramics International》2016,42(11):13047-13052
In this article, the nanostructured 2 mol% Gd2O3-4.5 mol% Y2O3-ZrO2(2GdYSZ) coating was developed by the atmospheric plasma spraying technique. And the microstructure and thermal properties of plasma-sprayed 2GdYSZ coating were investigated. The result from the investigation indicates that the as-sprayed coating is characterized by typical microstructure consisting of melted zones, nano-zones, splats, nano-pores, high-volume spheroidal pores and micro-cracks. The 2GdYSZ coating shows a lower resistance to destabilization of the metastable tetragonal (t′) phase compared to the yttria stabilized zirconia(YSZ). The thermal diffusivity and thermal conductivity of the nano-2GdYSZ coating at room temperature are 0.431 mm2 s−1 and 1.042 W/m K, respectively. Addition of gadolinia to the nano-YSZ can significantly reduce the thermal conductivity compared to the nano-YSZ and the conventional YSZ. The reduction is mainly attributed to the synergetic effect of gadolinia doping along with nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号