首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D surface crack. Stress field induced by body force doublet in a semi infinite body is used as a fundamental solution. Then the problem is formulated as an integral equation with a singularity of the form of r -3. In solving the integral equations, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function; that is, the exact density distribution to make an elliptical crack in an infinite body. The calculation shows that the present method gives the smooth variation of stress intensity factors along the crack front and crack opening displacement along the crack surface for various aspect ratios and Poisson's ratio. The present method gives rapidly converging numerical results and highly satisfactory boundary conditions throughout the crack boundary.  相似文献   

2.
In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D inclined semi-elliptical surface crack in a semi-infinite body under tension. The stress field induced by displacement discontinuities in a semi-infinite body is used as the fundamental solution. Then, the problem is formulated as a system of integral equations with singularities of the form r –3. In the numerical calculation, the unknown body force doublets are approximated by the product of fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately for various geometrical conditions. The effects of inclination angle, elliptical shape, and Poisson's ratio are considered in the analysis. Crack mouth opening displacements are shown in figures to predict the crack depth and inclination angle. When the inclination angle is 60 degree, the mode I stress intensity factor F I has negative value in the limited region near free surface. Therefore, the actual crack surface seems to contact each other near the surface.  相似文献   

3.
In this paper a singular integral equation method is applied to calculate the distribution of stress intensity factor along the crack front of a 3D rectangular crack. The stress field induced by a body force doublet in an infinite body is used as the fundamental solution. Then, the problem is formulated as an integral equation with a singularity of the form of r –3. In solving the integral equation, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function, which expresses stress singularity along the crack front in an infinite body. The calculation shows that the present method gives smooth variations of stress intensity factors along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary.  相似文献   

4.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

5.
In this study, generalized stress intensity factors KI,λ1, KII,λ2, and KIII,λ4 are calculated for a V-shaped notched round bar under tension, bending, and torsion using the singular integral equation of the body force method. The body force method is used to formulate the problem as a system of singular integral equations, where the unknown functions are the densities of body forces distributed in an infinite body. In order to analyze the problem accurately, the unknown functions are expressed as piecewise smooth functions using three types of fundamental densities and power series, where the fundamental densities are chosen to represent the symmetric stress singularity and the skew-symmetric stress singularity. Generalized stress intensity factors at the notch tip are systematically calculated for various shapes of V-shaped notches. Normalized stress intensity factors are given by using limiting solutions; they are almost determined by notch depth alone, and almost independent of other geometrical parameters. The accuracy of Benthem-Koiter’s formula proposed for a circumferential crack is also examined through the comparison with the present analysis.  相似文献   

6.
The stress intensity factors are presented for a vertical semi-elliptical surface crack in an elastic semi-infinite body which is subjected to a constant pressure on the crack surface. The approach utilizes a singular integral equation which is defined over the crack area only, where the weakness of the stress singularity is taken into account near the corner points at which the crack periphery intersects the surface of the semi-infinite body.This pertinent approach provides the proper assessment of the stress intensity factors in the vicinity of the corner points, and reveals that the stress intensity factor reaches a maximum value near the corner point and then decreases to zero as the point is approached.
Résumé On présente les facteurs d'intensité de contrainte pour une fissure de surface verticale semi-elliptique dans un corps élastique semi-infini soumis à une pression constante sur la surface de la fissure. L'approche utilisée recourt à une intégrale singulière définie uniquement sur la superficie de la fissure, où l'on prend en considération l'affaiblissement de la singularité des contraintes au voisinage des points où la périphérie de la fissure est en intersection avec la surface du corps semi-infini.Cette approche permet d'obtenir les facteurs d'intensité de contrainte au voisinage des points considérés et révèle que le facteur d'intensité des contraintes passe par un maximum en ceux-ci et décroît vers zéro lorsqu'on s'en éloigne.
  相似文献   

7.
To evaluate the mechanical strength of fiber reinforced composites it is necessary to consider singular stresses at the end of fibers because they cause crack initiation, propagation, and final failure. The singular stress is expressed by generalized stress intensity factors defined at the corner of fibers. As a 2D model an interaction between rectangular inclusions under longitudinal tension is treated in this paper. The body force method is used to formulate the problem as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where the unknown functions are the densities of body forces distributed in infinite plates having the same elastic constants as those of the matrix and inclusions. In order to analyze the problem accurately, the unknown functions are expressed as piecewize smooth functions using two types of fundamental densities and power series, where the fundamental densities are chosen to represent the symmetric stress singularity of 1/r 1– 1 and the skew-symmetric stress singularity of 1/r 1– 2. Then, generalized stress intensity factors at the end of inclusions are systematically calculated for various locations, spacings and elastic modulus of two rectangular inclusions in a plate subjected to longitudinal tension.  相似文献   

8.
The dynamic stress intensity factors for a semi-infinite crack in an otherwise unbounded elastic body is investigated. The crack is subjected to a pair of suddenly-applied shear point loads on its faces at a distance l away from the crack tip. This problem is treated as the superposition of two problems. The first problem considers the disturbance by a concentrated shear force acting on the surface of an elastic half space, while the second problem discusses a half space with its surface subjected to the negative of the tangential surface displacements induced by the first problem in the front of the crack edge. A fundamental problem is proposed and solved by means of integral transforms together with the application of the Wiener–Hopf technique and Cagniard–de Hoop method. Exact expressions are then derived for the mode II and III dynamic stress intensity factors by taking integration over the fundamental solution. Some features of the solutions are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The stress intensity factors for three-dimensional cruciform surface cracks in a semi-infinite body are numerically calculated by the body force method. Mindlin's point force solution is used for the derivation of basic equations to express the influence coefficient of triangular elements, into which the crack is divided. The interactions between crossed crack planes as well as contact between crack surfaces are considered in the iterative manner. Stress intensity factors for a cruciform median crack and a cruciform semicircular crack under a point force on the surface of a semi-infinite solid are analyzed. The possibility of growth of a median crack toward the free surface of the semi-infinite solid is discussed. A cruciform semicircular surface crack under remote uniaxial tension, or under combined tension and compression is also analyzed. The effect of contact of crack surfaces on stress intensity factors is discussed.  相似文献   

10.
Stress intensity factor solutions for semi-elliptic surface and quarter-elliptic corner cracks emanating from a semi-circular notch in a tension specimen are presented. A threedimensional finite-element analysis in conjunction with the equivalent domain integral was used to calculate stress intensity factors (SIF). SIF solutions for surface or corner crack (crack length to depth ratio of 2) at a notch are presented for a wide range of crack sizes and notch radii. Results showed that the SIF are larger for larger crack lengths and for larger notch radii. The SIF are nearly constant all along the crack front for deep surface cracks and for all corner cracks analysed.  相似文献   

11.
The solution of crack problems in plane or antiplane elasticity can be reduced to the solution of a singular integral equation along the cracks. In this paper the Radau-Chebyshev method of numerical integration and solution of singular integral equations is modified, through a variable transformation, so as to become applicable to the numerical solution of singular integral equations along semi-infinite intervals, as happens in the case of semi-infinite cracks, and the direct determination of stress intensity factors at the crack tips. This technique presents considerable advantages over the analogous technique based on the Gauss-Hermite numerical integration rule. Finally, the method is applied to the problems of (i) a periodic array of parallel semi-infinite straight cracks in plane elasticity, (ii) a similar array of curvilinear cracks, (iii) a straight semi-infinite crack normal to a bimaterial interface in antiplane elasticity and (iv) a similar crack in plane elasticity; in all four applications appropriate geometry and loading conditions have been assumed. The convergence of the numerical results obtained for the stress intensity factors is seen to be very good.  相似文献   

12.
A computer code based on the use of the surface integral method, which represents a crack as a distribution of force dipoles, has been developed for modeling 3D nonplanar fractures. The nonplanar geometry was approximated as piecewise linear by subdividing the fracture surface into triangular elements that assume constant crack opening in the interior, and a p 1/2 variation of opening along the crack front. The resulting singular integral equations were integrated using a combination of numerical and analytical techniques.Convergence studies using the surface integral formulation have yielded accurate stress intensity factors and crack opening displacements for both planar and nonplanar cracks under a variety of mixed mode loading conditions. Elliptical meshes were mapped on to cylindrical and spherical surfaces to model nonplanar fractures that could be compared to published results. Also, a high aspect ratio rectangular mesh was used to model a nonplanar kinked crack under plane strain conditions.  相似文献   

13.
Y. Shindo 《Acta Mechanica》1988,73(1-4):147-162
Summary The impact response of a crack in a semi-infinite body with a surface layer which is subjected to antiplane shear deformation is considered in this study. The semi-infinite body contains a crack near an interface. Using Laplace and Fourier transforms, the case of a crack perpendicular to the interface is reduced to a set of triple integral equations in the Laplace transform plane. The solution to the triple integral equations is then expressed in terms of a singular integral equation of the first kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factors at the crack tips are obtained for several values of time, material constants, and geometrical parameters.With 8 Figures  相似文献   

14.
This note is concerned with a semi-elliptical surface crack arbitrarily inclined to the free surface of a semi-infinite solid subjected to tension. The analysis is performed by the body force method, and the stress intensity factor at the maximum depth point on the crack front are given for various shapes and inclination angles of the crack. The numerical results are fitted to a reliable polynomial for convenience in engineering applications.  相似文献   

15.
In this paper, the plane problems of a single edge crack in two bonded elastic layers and in an elastic surface layer bonded to an elastic semi-infinite plane are analyzed by the body force method. The stress fields induced by a point force and a displacement discontinuity in two bonded elastic half-planes obtained by Hetenyi's solution, in other words, Green's function in closed forms, are used as fundamental solutions to solve those problems. The boundary conditions for stress free-edges of the layers and the crack surface are satisfied by superposing the distributed fundamental solutions and adjusting their densities. The stress intensity factors are systematically calculated for the various geometrical conditions and the various stiffness ratios of the layers.  相似文献   

16.
A modified version of the T-stress based fracture model, developed by Cotterell and Rice, is proposed. In this version an experimentally determined Tcrit value is included in the model. The model is then applied to a branched crack in an isotropic material, and the direction of growth of the crack is predicted qualitatively. The branched crack problem is solved using the method of dislocations and a singular integral equation is obtained. The singular integral equation is solved using three different numerical techniques and their respective merits are discussed. The stress intensity factors and the T-stress in front of the branched crack tip are evaluated numerically. It is shown that the T-stress and the stress intensity factors are insensitive to the order of the singularity assumed at the reentrant wedge corner of the branched crack. For an uniaxial load and short kink length it is demonstrated that the kink will turn from its initial direction and realign with the main crack. However if the loading is biaxial then the direction of kink growth depends strongly on the applied transverse stress σxx. For a longer initial kink length the direction of kink growth depends on both the kink angle and loading.  相似文献   

17.
This article presents an evaluation of two different crack prediction approaches based on a comparison of the stress intensity factor distribution for three example problems. A single edge notch specimen and a quarter circular corner crack specimen subjected to shear displacements and a three point bend specimen with a crack inclined to the mid-plane are examined. The stress intensity factors are determined from the singular stress field close to the crack front. Two different fracture criteria are adopted for the calculation of an equivalent stress intensity factor and crack deflection angle. The stress intensity factor distributions for both numerical methods agree well to available reference solutions. Deviations are recorded at crack front locations near the free surface probably due to global contraction effects and the twisting behaviour of the crack front. Crack propagation calculations for the three point bending specimen give results that satisfy intuitive expectations. The outcome of the study encourages further pursuit of a crack propagation tool based on a combination of elements.  相似文献   

18.
A numerical method using a path-independent H-integral based on the Betti reciprocal principle was developed to analyze the stress intensity factors of an interfacial corner between anisotropic bimaterials under thermal stress. According to the theory of linear elasticity, asymptotic stress near the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams eigenfunction method, which depends on the materials’ properties and the geometry of an interfacial corner. The order of the singularity related to the eigenvalue is real, complex or power-logarithmic. The amplitudes of the singular stress terms can be calculated using the H-integral. The stress and displacement fields around an interfacial corner for the H-integral are obtained using finite element analysis. A proposed definition of the stress intensity factors of an interfacial corner involves a smooth expansion of the stress intensity factors of an interfacial crack between dissimilar materials. The asymptotic solutions of stress and displacement around an interfacial corner are uniquely obtained using these stress intensity factors.  相似文献   

19.
The singular stress field at the interface-corner of a bi-material scarf joint is analysed for a strip of finite width, w, under remote tension and bending. The two substrates are taken as linear elastic and isotopic. The intensity of the singular stress field is calculated using a domain integral method, and is plotted as a function of joint geometry and material mismatch parameters. It is envisaged that the intensity of singularity can serve as a valid fracture criterion provided the zone of nonlinearity is fully embedded within the singular elastic field. It is assumed that fracture initiates when the magnitude of the corner singularity attains a critical value; consequently, the fracture strength of the joint depends upon the size of the structure. In addition, the interfacial stress intensity factor and the associated T-stress are determined for an edge interfacial crack. When the crack is short with respect to the width of the strip, the stress intensity factor is dominated by the presence of the corner singularity; a boundary layer formulation is used to determine the coupling between the crack tip field and the interface-corner field. The solution suggests that an interfacial crack grows unstably with a rapidly increasing energy release rate, but with only a small change in mode mix. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号