首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
本征态聚苯胺/环氧有机硅复合涂层的防腐性能   总被引:2,自引:1,他引:1  
目的研究本征态聚苯胺/环氧有机硅复合涂层在Na Cl溶液中对Q235低碳钢的防腐效果。方法以自制的本征态聚苯胺为防腐颜料,按比例加入填料及助剂,砂磨分散后制备质量分数为0.5%、1.0%及1.5%的本征态聚苯胺/环氧有机硅复合涂层。Q235钢板经砂纸打磨后去油除渍,采用喷涂方式涂覆制备涂层样品。利用扫描电子显微镜观察不同添加量的本征态聚苯胺在环氧有机硅涂层中的分散状态,涂层在质量分数为3.5%的Na Cl溶液浸泡不同时间,采用X射线光谱分析涂层浸泡后的物相,并通过开路电位和电化学阻抗谱对比分析涂层的耐腐蚀性能。结果本征态聚苯胺/环氧有机硅复合涂层中EB添加量(质量分数)为1.0%时,颗粒分散较均匀且能促进形成致密的氧化钝化膜,浸泡后期的涂层表面微孔电阻值较高(Rpo=3.89×106Ω·cm2),表现出良好的电化学性能;添加量(质量分数)为0.5%时颗粒分散较稀疏,涂层的阻抗值和拟合电阻值均下降;添加量(质量分数)为1.5%时涂层的阻抗值和拟合电阻值较小,腐蚀速度不断加快。结论本征态聚苯胺添加量(质量分数)为1.0%时,其在环氧有机硅涂层的分散均匀且致密,并在3.5%的Na Cl溶液中浸泡后对Q235低碳钢表现出良好的防腐效果。  相似文献   

2.
目前,开发聚苯胺防腐涂料已成为高分子导电材料的应用和涂料研究开发领域的一个新的热点。为了研究本征态聚苯胺对丙烯酸涂层防腐性能的影响,制备了本征态聚苯胺质量分数分别为0%,1%,3%,5%及10%的聚苯胺/丙烯酸防腐涂层,应用Tafel极化曲线和电化学阻抗谱方法对比了其在3.5%NaCl溶液中的防腐性能。研究表明,聚苯胺在丙烯酸涂层中的含量对涂层的防腐性能有较大影响,聚苯胺质量分数为3%时,涂层具有最佳的防腐性能。  相似文献   

3.
聚苯胺防腐涂料的研究现状   总被引:3,自引:0,他引:3  
高焕方  刘通  王连杰 《表面技术》2006,35(4):13-14,20
对国内外聚苯胺防腐涂料的研究现状进行了概述,包括聚苯胺的结构和性能、目前制备聚苯胺防腐涂层的3种主要方法,并比较了3种方法的特点.对聚苯胺防腐涂料的防腐性能与防腐机理进行简单介绍,并指出了聚苯胺防腐涂料下一步应开展的工作.  相似文献   

4.
通过向环氧涂层中添加适量的氧化石墨烯-氟代聚苯胺(GO-PFAN)复合填料,有效提高了环氧涂层在N80钢的耐腐蚀性能,同时考察了复合填料加量对环氧涂层防腐性能的影响。实验结果表明,氧化石墨烯-氟代聚苯胺/环氧复合涂层在3.5%NaCl溶液中浸泡60天后仍具有较高的阻抗值,其中复合填料添加量为2 wt%的环氧涂层的阻抗值最高,为5.67×1010Ω·cm2,说明添加了复合填料的环氧涂层具有优异的防腐性能。  相似文献   

5.
复合型聚苯胺防腐涂料的研究进展   总被引:4,自引:3,他引:4  
综述了近年来国内外聚苯胺防腐涂料的研究状况和应用领域.介绍了聚苯胺复合防腐涂层的制备方法和防腐机理.聚苯胺复合防腐涂层的制备方法包括涂层复合和共混复合两种方式,其防腐机理主要是有良好的屏蔽作用、钝化作用和阴阳极反应分离作用.提出了聚苯胺防腐涂料目前存在的问题和今后的研究方向.  相似文献   

6.
制备了本征态聚苯胺在涂层中质量分数分别为0%、1.5%、3%、5%、7%、10%的聚苯胺/环氧防腐蚀涂层,通过Tafel极化曲线和电化学阻抗谱测试对比了其在35%NaCl溶液中的腐蚀性能,结果表明,聚苯胺含量对涂层的防腐蚀性能有较大影响:涂层中聚苯胺含量较小时,随着其在涂层中含量的增加,涂层的腐蚀电位相应提高,而随着聚苯胺含量的进一步增加,涂层的防腐蚀效果开始下降.涂层中聚苯胺质量分数含量为5%时,涂层具有最佳的防腐蚀性能.  相似文献   

7.
目的初步探索由聚苯胺/磷酸锌有机-无机复合钝化填料和环氧-聚硅氧烷树脂制备的自修复涂层的修复和防腐性能。方法采用微区交流阻抗技术(LEIS)、扫描电子显微技术(SEM)和电化学阻抗技术(EIS),研究了聚苯胺/磷酸锌/聚硅氧烷复合涂层的防腐性能和在人工损伤部位的修复功能。结果由微区电化学阻抗和电化学阻抗测试可知,环氧-聚硅氧烷清漆具有自修复和优异的耐蚀性能;偶联剂处理的聚苯胺/磷酸锌有机-无机复合钝化填料(HCE),可显著提升环氧-聚硅氧烷涂层的自修复和耐蚀性能。当HCE的添加量为0.3%(以占环氧-聚硅氧烷涂料质量的百分比计)时,涂层的自修复和耐蚀性能最佳,缺陷部位修复后的阻抗值最大达到70 k?,是环氧-聚硅氧烷清漆的9倍。涂层阻抗值随浸泡时间的延长而增加,浸泡3750 h时,涂层阻抗值增至10~(11)?·cm~2。结论当涂层产生缺陷时,一方面聚苯胺/磷酸锌有机-无机复合填料发生氧化还原反应,生成新的氧化膜;另一方面,聚苯胺与环氧-聚硅氧烷树脂发生交联固化反应,在基体缺陷处成膜,提高了涂层的致密性;二者协同作用使HCE3涂层试样具有最佳的耐蚀性能和自修复功能。  相似文献   

8.
制备了本征态聚苯胺质量分数分别为0%、1%、3%、5%及10%的聚苯胺丙烯酸防腐蚀涂层,通过在3.5%NaCl溶液中的电化学阻抗谱测试及在3%NaCl溶液中的常温浸泡试验对比了其防腐蚀性能。研究表明聚苯胺含量对涂层的防腐蚀性能有较大影响,涂层中聚苯胺含量较小时,随着聚苯胺含量的增加,涂层的防腐蚀性能相应提高,而随着聚苯胺含量的进一步增加,涂层的防腐效果开始下降。聚苯胺质量分数为3%时,涂层具有最佳的防腐蚀性能。  相似文献   

9.
利用化学氧化法在酸性环境下合成聚苯胺,制备了含有不同浓度聚苯胺表面涂层的碳钢试样,通过极性曲线外延法,在1 mol/L的Na Cl溶液和HCl溶液中比较碳钢试样的防腐性能。结果表明,聚苯胺对碳钢具有明显的防腐作用,且防腐作用随着聚苯胺浓度的增加而逐渐增强,聚苯胺在酸溶液和盐溶液中都对金属具有一定的防腐作用,且在盐溶液中的防腐作用要强与在酸溶液中。  相似文献   

10.
聚苯胺防腐涂料的制备与性能研究   总被引:8,自引:2,他引:8  
制备了经不同含量的聚苯胺涂覆的碳钢试样,通过腐蚀电位时效法研究腐蚀环境中的开路电压与时间的关系,利用动电位扫描研究塔菲尔曲线,检测了在质量分数为3.5%NaCl和0.1mol/L HCl溶液中的腐蚀行为.研究发现当环氧树脂脂肪胺固化剂充当溶剂首先与聚苯胺混合,再加入环氧树脂所制得的涂层比环氧树脂先与聚苯胺混合,再加入固化剂所制得的涂层的防腐性能要更好一些.研究结果表明聚苯胺涂覆的碳钢试样的防腐性能与样品中聚苯胺分散性有关,分散性越好,涂层的防腐性能越强.  相似文献   

11.
反应温度及pH值对聚苯胺/环氧树脂涂料防腐性能的影响   总被引:2,自引:1,他引:1  
采用原位乳液聚合法,合成了聚苯胺/环氧树脂(PAn/EP)复合涂料,研究了聚合反应温度及体系pH值对其防腐性能的影响,并探讨了其防腐机理.结果表明,当反应温度为25℃、体系中PH=1时合成的PAn/EP复合涂料的防腐效果较好,并明显优于商品PAn/EP混合涂料.  相似文献   

12.
目的研究聚苯胺/石墨烯水性防腐涂料的耐蚀性能。方法采用盐酸为掺杂酸,以聚乙烯基呲咯烷酮(PVP-K30)为空间稳定剂,利用原位聚合法,以苯胺和石墨烯为原料,过硫酸铵为氧化剂,制备聚苯胺/石墨烯复合材料。将聚苯胺/石墨烯、纯聚苯胺、石墨烯分别添加到HG-54C乳液中制备水性防腐涂料,利用动电位极化曲线和盐雾试验对比分析聚苯胺/石墨烯、纯聚苯胺、石墨烯水性涂层的防腐性能,再通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)对比分析其结构和微观形貌。结果聚苯胺均匀地覆盖在石墨烯的片层结构上形成氧化插层结构。当复合材料浸泡在3.5%Na Cl溶液中,腐蚀电流密度为2.3955×10-7A/cm2。盐雾试验表明,聚苯胺/石墨烯的防腐性能优于添加纯聚苯胺和石墨烯的性能。结论聚苯胺/石墨烯涂层具有良好的耐蚀性能,其耐蚀性能优于纯聚苯胺涂层和石墨烯涂层。  相似文献   

13.
通过化学氧化法合成本征态及氢氟酸掺杂态聚苯胺(PANI),用红外光谱对其结构进行表征。以环氧树脂为成膜物质,在AZ91D镁合金基体上制备了本征态及氢氟酸掺杂的 PANI/环氧涂层,用EIS方法研究涂层在3.5%NaCl溶液中的耐蚀性,并用SEM对浸泡后基体表面形貌进行观察。实验结果表明,与环氧清漆相比,本征态PANI的加入明显改善了环氧涂层的耐蚀性,而氢氟酸掺杂后进一步提高了PANI/环氧涂层的性能。用XPS对基体表面分析,发现添加聚苯胺的涂层在镁合金表面形成了具有保护作用的产物膜。  相似文献   

14.
二次掺杂聚苯胺的防腐蚀性能   总被引:1,自引:0,他引:1  
采用不同的功能质子酸对化学氧化法合成的聚苯胺进行二次掺杂,比较了不同掺杂态聚苯胺的溶解性能;采用开路电位法和极化曲线法考查聚苯胺/环氧复合涂膜的防腐蚀性能。结果表明,用十二烷基苯磺酸钠(DBSA)掺杂的聚苯胺涂料具有很好的防腐蚀性能,涂覆该涂料的平衡开路电位比空白试样提高了近100 mV。  相似文献   

15.
目的研究水性环氧/硅烷化纳米TiO2复合防护涂层在3.5%NaCl溶液中的失效规律和防腐性能。方法采用3-氨丙基三乙氧基硅烷(APTES)化学接枝改性纳米TiO2颗粒,将硅烷改性纳米TiO2均匀分散在水性环氧涂料中,并把混合涂料涂覆在Q235钢试样上。采用傅里叶红外光谱仪(FTIR)和热重分析仪(TGA)测试纳米TiO2表面化学接枝改性情况,采用电化学工作站测试复合涂层的电化学性能,采用激光共聚焦显微镜观察复合膜层的表面形貌。结果使用质量分数10%APTES改性纳米TiO2,单齿螺旋结构占有的比例更高;使用质量分数20%APTES改性纳米TiO2,具有最高的接枝密度,为11.78 APTES/nm^2。电化学测试结果显示,环氧/TiO2复合涂层比纯环氧涂层具有更好的耐蚀性能,其中加入质量分数20%APTES改性纳米TiO2的环氧/TiO2复合涂层对基体的保护性能最好,其涂层电阻是纯环氧涂层的12倍,电荷转移电阻是纯环氧涂层的18倍。在相同的腐蚀条件下,单齿螺旋结构更容易被破坏。加入硅烷纳米TiO2颗粒后,可以显著减少涂层表面尖峰状突起和孔洞。结论纳米TiO2的APTES接枝分子密度,是水性环氧/硅烷化纳米TiO2复合防护涂层耐腐蚀性能提高的直接原因。  相似文献   

16.
铝表面聚苯胺的电化学合成与性能研究   总被引:1,自引:1,他引:0  
王华  宋航 《表面技术》2016,45(4):46-52
目的 提高铝在含氯离子介质中的耐腐蚀性能.方法 在含有0.4 mol/L苯胺的1 mol/L硫酸中,采用恒电位法和循环伏安法在铝表面电化学合成聚苯胺,用红外光谱、紫外光谱和扫描电镜对聚苯胺的结构和形貌进行表征.通过动电位极化曲线和电化学交流阻抗测试,研究聚苯胺在0.6 mol/L NaCl、0.6 mol/L HCl、0.3 mol/L H2 SO4和0.3 mol/L H2 SO4+0.6 mol/L NaCl几种腐蚀介质中对铝的防护性能.结果 红外光谱表明,合成的是硫酸掺杂态聚苯胺.紫外-可见光谱表明,不同电化学方法 合成的聚苯胺吸收峰位置相近.扫描电镜观察显示,恒电位法制备的聚苯胺为纳米短棒状结构,而循环伏安法制备的聚苯胺呈现出颗粒状结构.聚苯胺涂层铝在各种腐蚀溶液中的自腐蚀电位都比铝正移,在0.3 mol/L H2 SO4中,恒电位法和循环伏安法制备的试样自腐蚀电位分别提高了769、894 mV.相比于恒电位法,循环伏安法制备的聚苯胺涂层具有更好的防腐蚀性能,在0.3 mol/L H2 SO4+0.6 mol/L NaCl中的保护效率高达91.69%,在0.6 mol/L HCl和0.6 mol/L NaCl溶液中的保护效率分别为80.40%和6.54%.结论 聚苯胺涂层在酸性溶液中比在中性溶液中具有更明显的腐蚀防护效果,在0.3 mol/L H2 SO4+0.6 mol/L NaCl强腐蚀性溶液中能对铝基体起到良好的防腐蚀作用.  相似文献   

17.
陈宇  潘正凯  陈均 《表面技术》2017,46(7):26-31
目的研究水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层在NaCl溶液中对马口铁的防腐效果。方法采用原位化学氧化聚合方法,制备了聚苯胺/海泡石复合材料,并以丙烯酸乳液为成膜物质,制备了水性聚苯胺/海泡石/丙烯酸乳液复合防腐蚀涂层材料。通过扫描电镜和EDX对聚苯胺/海泡石复合材料的结构和形貌进行了表征。利用电化学交流阻抗谱、塔菲尔曲线和硫酸铜点滴试验,研究了海泡石/苯胺投料比、聚苯胺/海泡石复合材料用量、磷酸浓度等对复合涂层防腐性能的影响。结果扫描电镜观察显示,苯胺/海泡石复合材料具有纤维状结构。电化学测试及硫酸铜点滴试验表明,当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,其腐蚀电流密度为1.013X10~(-6)A/cm~2,腐蚀电位为-0.385V,极化电阻为14 350.8?,耐硫酸铜腐蚀时间为275 s,防腐效果最佳。结论当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层对马口铁具有最佳的防腐效果。  相似文献   

18.
    利用两步法制备了纳米氧化硅复合环氧涂料和聚氨酯涂料.并对其耐磨性与耐蚀性进行了研究.其结果表明:与未加入纳米氧化硅的涂层相比,纳米氧化硅复合环氧涂层和聚氨酯涂层的显微硬度分别提高7%、6.2%,耐磨性有很大提高,同时纳米氧化硅聚氨酯涂层耐蚀性有明显提高,纳米氧化硅环氧涂层的耐蚀性没有下降.     相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号