首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OLED有源驱动TFT阵列的一种测试方法   总被引:2,自引:2,他引:0  
提出了一种检测有源驱动OLED TFT阵列的方法,这种电流检测方法是结合TFT的制作工艺进行的. 在只增加一块光刻版的情况下,有效地解决了在含有2个TFT的单元像素电路中,检测驱动管困难的难题. 这种检测方法能够进行快速的全屏检测,具有精度高,对TFT阵列无损伤的特点.  相似文献   

2.
提出了一种检测有源驱动OLED TFT阵列的方法,这种电流检测方法是结合TFT的制作工艺进行的.在只增加一块光刻版的情况下,有效地解决了在含有2个TFT的单元像素电路中,检测驱动管困难的难题.这种检测方法能够进行快速的全屏检测,具有精度高,对TFT阵列无损伤的特点.  相似文献   

3.
Tactile detection is a crucial technology in many fields, such as electronic skin, touch screen control, human prostheses, and screen fingerprint identification. Tribotronics has demonstrated active mechanosensation from external mechanical stimuli, which greatly enriches the sensing mechanisms of tactile detection. In this work, a monolithic integrated indium‐gallium‐zinc‐oxide (InGaZnO or IGZO) thin‐film transistor (TFT) array is developed for high‐resolution tactile detection. By using the conventional semiconductor fabrication processes, each IGZO TFT cell in the array shows uniform electrical performance. In addition, the drain–source current can be individually tuned by the electrostatic potential generated by the contact electrification between a movable gate and the gate dielectric. The monolithic integrated array displays a relatively high resolution of 12 pixels per inch and can realize a millimeter‐level tactile perception and motion tracking. This work presents a facile and viable strategy toward micro/nano‐scale tribotronics, which can realize high‐resolution and large‐scale tactile detection.  相似文献   

4.
微腔有机发光二极管   总被引:3,自引:0,他引:3  
设计了由分布布拉格反射镜(DBR)和金属反射镜面形成的微腔结构。利用8-羟基喹啉铝(A1q3)作为电子传输层兼作发光层,TPD作为空穴传导层,了有机发光二极管(OLED)和微腔有机发光二极管(MOLED)。发现MOLED的光谱工比OLED的窄得多,而光密度则得到了增强,对腔长进行调节,MOLED光谱峰出现移动。实验结果与理论计算基本符合。  相似文献   

5.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

6.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

7.
介绍了两管薄膜晶体管(TFT)和四管TFT有源驱动有机发光二极管工作原理,结合TFT工作条件限制以及实现显示的要求完成了四管TFT有源驱动有机电致发光单元像素的设计,利用Hspice软件验证了单元像素的设计结果,最大输出电流为2.1 μA,一帧的时间后变化到2.0 μA,变化量小于一个灰阶电流,满足显示要求.  相似文献   

8.
The relatively high sheet resistance of graphene compared with indium tin oxide (ITO) blocks the applications of graphene as transparent electrodes in organic light‐emitting diodes. A novel copper (Cu)/graphene composite electrode is presented and employed as the anode of a top‐emission organic light‐emitting diode with the structure of Cu/graphene/V2O5/NPB/Alq3/Alq3: C545T/Bphen: Cs2CO3/Sm/Au. The Cu/graphene composite electrodes are fabricated by growing graphene directly on Cu substrates via the chemical vapor deposition method without any transfer process. The maxima of current efficiency and power efficiency of a typical Cu/graphene composite anode device reach 6.1 cd/A and 7.6 lm/W, respectively, which are markedly higher than those of the control devices with a graphene anode, a Cu anode or an ITO anode. The low sheet resistance of the composite electrode, the high quality of graphene without any transfer process and the avoidance of wave guiding loss in glass or polyethylene terephthalate substrates result in the improvements of light emission efficiencies.  相似文献   

9.
Conventional planar organic light‐emitting diodes (OLEDs) suffer from poor light extraction due to the total internal reflection at the waveguided interfaces. Therefore, the development of efficient light extraction structures is of great necessity and significance to realize practical applications in large area and cost‐effective light sources. In this paper, a high‐performance internal light outcoupling system for white OLEDs with spontaneously formed metal oxide nanostructures is developed. The fabrication process of the outcoupling system is simple and can be scaled to large area manufacturing. The enhancement of external quantum efficiency in white OLEDs comprising the outcoupling system reaches a factor of 1.7, and it is further increased to 2.9 when a hemispherical lens is employed. Together with the improvement of light extraction, excellent color stability over broad viewing angles is achieved.  相似文献   

10.
Orange‐emitting phosphorescent copolymers containing iridium complexes and bis(carbazolyl)fluorene groups in their side chains are employed as the emissive layer in multilayer organic light‐emitting diodes (OLEDs). The efficiency of the OLED devices is optimized by varying characteristics of the copolymers: the molecular weight, the iridium loading level, and the nature and length of the linker between the side chains and the polymer backbone. A maximum efficiency of 4.9 ± 0.4%, 8.8 ± 0.7 cd A−1 at 100 cd m−2 is achieved with an optimized copolymer.  相似文献   

11.
Highly power‐efficient white organic light‐emitting diodes (OLEDs) are still challenging to make for applications in high‐quality displays and general lighting due to optical confinement and energy loss during electron‐photon conversion. Here, an efficient white OLED structure is shown that combines deterministic aperiodic nanostructures for broadband quasi‐omnidirectional light extraction and a multilayer energy cascade structure for energy‐efficient photon generation. The external quantum efficiency and power efficiency are raised to 54.6% and 123.4 lm W?1 at 1000 cd m?2. An extremely small roll‐off in efficiency at high luminance is also obtained, yielding a striking value of 106.5 lm W?1 at 5000 cd m?2. In addition to a substantial increase in efficiency, this device structure simultaneously offers the superiority of angular color stability over the visible wavelength range compared to conventional OLEDs. It is anticipated that these findings could open up new opportunities to promote white OLEDs for commercial applications.  相似文献   

12.
Previous studies have identified triplet‐triplet annihilation and triplet‐polaron quenching as the exciton density‐dependent mechanisms which give rise to the efficiency roll‐off observed in phosphorescent organic light‐emitting devices (OLEDs). In this work, these quenching processes are independently probed, and the impact of the exciton recombination zone width on the severity of quenching in various OLED architectures is examined directly. It is found that in devices employing a graded‐emissive layer (G‐EML) architecture the efficiency roll‐off is due to both triplet‐triplet annihilation and triplet‐polaron quenching, while in devices which employ a conventional double‐emissive layer (D‐EML) architecture, the roll‐off is dominated by triplet‐triplet annihilation. Overall, the efficiency roll‐off in G‐EML devices is found to be much less severe than in the D‐EML device. This result is well accounted for by the larger exciton recombination zone measured in G‐EML devices, which serves to reduce exciton density‐driven loss pathways at high excitation levels. Indeed, a predictive model of the device efficiency based on the quantitatively measured quenching parameters shows the role a large exciton recombination zone plays in mitigating the roll‐off.  相似文献   

13.
The rapid development of charge transporting and light‐emitting organic materials in the last decades has advanced device performance, highlighting the high potential of light‐emitting transistors (LETs). Demonstrated for the first time over 15 years ago, LETs have transformed from an optoelectronic curiosity to a serious competitor in the race for cheaper and more efficient displays, also showing promise for injection lasers. Thus, what is an LET, how does it work, and what are the current challenges for its integration into mainstream technologies? Herein, some light is shed on these questions. This work also provides the fundamental working principle of LETs, materials that have been used, and device physics and architectures involved in the progression of LET technology. The state‐of‐the‐art development of LETs is also explored as prospect avenues for the future of research and applications in this area.  相似文献   

14.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

15.
Tribotronics is a new field developed by coupling triboelectricity and semiconductor, which can drive triboelectric‐charge‐controlled optoelectronic devices by further introducing optoelectronics. In this paper, a tribotronic phototransistor (TPT) is proposed by coupling a field‐effect phototransistor and a triboelectric nanogenerator (TENG), in which the contact‐induced inner gate voltage by the mobile frictional layer is used for modulating the photodetection characteristics of the TPT. Based on the TPT, alternatively, a coupled energy‐harvester (CEH) is fabricated for simultaneously scavenging solar and wind energies, in which the output voltage on the external resistance from the wind driven TENG is used as the gate voltage of the TPT for enhancing the solar energy conversion. As the wind speed increases, the photovoltaic characteristics of the CEH including the short‐circuit current, open‐circuit voltage, and maximal output power have been greatly enhanced. This work has greatly expanded the functionality of tribotronics in photodetection and energy harvesting, and provided a potential solution for highly efficient harvesting and utilizing multitype energy.  相似文献   

16.
Non‐crystalline anthracene‐containing binaphthol chromophores were synthesized, characterized, and used in the fabrication of organic light‐emitting diodes (OLEDs). Specifically, the target molecules were 2,2′‐dihexyloxy‐1,1′‐binaphthol‐6,6′‐bisanthracene ( BA1 ) and 2,2′‐dimethoxyy‐1,1′‐binaphthol‐6,6′‐bisanthracene ( BA2 ). Molecules BA1 and BA2 provide amorphous solids, as determined by their glass‐transition temperature (Tg) measured by differential scanning calorimetry (DSC). Efficient multilayer OLEDs containing BA1 and BA2 were fabricated by evaporation techniques. Differences in the electroluminescence frequencies of these devices suggests that the degree of alkoxide substitution controls the mobility within the binaphthol material, and therefore the recombination region in the device. Compound BA2 can also be used to dope CBP ((4,4′‐bis(carbazol‐9‐yl)biphenyl)) in the fabrication of highly efficient OLEDs.  相似文献   

17.
Results obtained from modeling the light out‐coupling efficiency of an organic light‐emitting diode (OLED) structure containing the recently developed first‐generation fac‐tris(2‐phenylpyridine) iridium‐cored dendrimer (Ir‐G1) as the emissive organic layer are reported. Comparison of the results obtained for this material with those of corresponding structures based upon small‐molecule and polymer emissive materials is made. The calculations of out‐coupling efficiency performed here take account of many factors, including the photoluminescence quantum yield (PLQY) of the emissive materials. Further, how each material system might perform with regard to out‐coupling efficiency when a range of possible PLQYs are considered is shown. The calculations show that the very high efficiency of dendrimer‐based OLEDs can be attributed primarily to their high PLQY.  相似文献   

18.
White organic light‐emitting diodes (OLEDs) are highly efficient large‐area light sources that may play an important role in solving the global energy crisis, while also opening novel design possibilities in general lighting applications. Usually, highly efficient white OLEDs are designed by combining three phosphorescent emitters for the colors blue, green, and red. However, this procedure is not ideal as it is difficult to find sufficiently stable blue phosphorescent emitters. Here, a novel approach to meet the demanding power efficiency and device stability requirements is discussed: a triplet harvesting concept for hybrid white OLED, which combines a blue fluorophor with red and green phosphors and is capable of reaching an internal quantum efficiency of 100% if a suitable blue emitter with high‐lying triplet transition is used is introduced. Additionally, this concept paves the way towards an extremely simple white OLED design, using only a single emitter layer.  相似文献   

19.
Two compounds, 2,3‐dicyano‐5,6‐di(4′‐diphenylamino‐biphenyl‐4‐yl)pyrazine (CAPP) and 6,7‐dicyano‐2,3‐di(4′‐diphenylamino‐biphenyl‐4‐yl)quinoxaline (CAPQ), capable of intramolecular charge transfer, have been designed and synthesized in high yield by a convenient procedure. The compounds have been fully characterized spectroscopically. They have a high thermal stability and show bright light emission both in non‐polar solvents and in the solid state. Moreover, they exhibit excellent reversible oxidation and reduction waves. The higher energy level of the highest occupied molecular orbital (–5.3 eV) and the triphenylamine group are advantageous for hole‐injection/transport. In addition, the high electron affinities of 3.4 eV and the observed reversible reductive process suggest that these compounds enhance electron injection and have potential for use in electron transport. Three types of non‐doped red‐light‐emitting diodes have been studied using CAPP and CAPQ as the electron‐transporting and host‐light‐emitting layers, respectively. The devices exhibit red electroluminescence (EL), and constant Commission Internationale de l'Eclairage coordinates have been observed on increasing the current density. Pure red EL of CAPP, with a maximum brightness of 536 cd m–2 and an external quantum efficiency of 0.7 % in ambient air, was achieved.  相似文献   

20.
Since the birth of light‐emitting electrochemical cells (LECs) in 1995, white LECs (WLECs) still represent a milestone. To date, over 50 contributions have been reported, presenting record WLECs with brightness of up to 10 000 cd m?2, efficiencies of >10 cd A?1, and excellent color rendering index >90 in different contributions. This is achieved following three main strategies focused on modifying: i) the design of the emitters, that is, emissive aggregates, multiemissive mechanism, multifluorophoric emitters; ii) the active layer composition, that is, host–guest, multilayers, exciplex‐ and electroplex‐like emitting species systems; and iii) the device architecture, that is, tandem, photoactive filters, and microcavity/interfacial dipole effects. Herein, all of them are comprehensively discussed with respect to the above strategies in the frame of the type of emitters employed. Overall, this work highlights both the advances and challenges of the WLEC field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号