首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water hampers the formation of strong and durable bonds between adhesive polymers and solid surfaces, in turn hindering the development of adhesives for biomedical and marine applications. Inspired by mussel adhesion, a mussel foot protein homologue (mfp3S‐pep) is designed, whose primary sequence is designed to mimic the pI, polyampholyte, and hydrophobic characteristics of the native protein. Noticeably, native protein and synthetic peptide exhibit similar abilities to self‐coacervate at given pH and ionic strength. 3,4‐dihydroxy‐l ‐phenylalanine (Dopa) proves necessary for irreversible peptide adsorption to both TiO2 (anatase) and hydroxyapatite (HAP) surfaces, as confirmed by quartz crystal microbalance measurements, with the coacervate showing superior adsorption. The adsorption of Dopa‐containing peptides is investigated by attenuated total reflection infrared spectroscopy, revealing initially bidentate coordinative bonds on TiO2, followed by H‐bonded and eventually long‐ranged electrostatic and Van der Waals interactions. On HAP, mfp3s‐pep‐3Dopa adsorption occurs predominantly via H‐bond and outersphere complexes of the catechol groups. Importantly, only the Dopa‐bearing compounds are able to remove interfacial water from the target surfaces, with the coacervate achieving the highest water displacement arising from its superior wetting properties. These findings provide an impetus for deve­loping coacervated Dopa‐functionalized peptides/polymers adhesive formulations for a variety of applications on wet polar surfaces.  相似文献   

2.
Nature has evolved several molecular strategies to ensure adhesion in aqueous environments, where artificial adhesives typically fail. One recently‐unveiled molecular design for wet‐resistant adhesion is the cohesive cross‐β structure characteristic of amyloids, complementing the well‐established surface‐binding strategy of mussel adhesive proteins based on 3,4‐l ‐dihydroxyphenylalanine (Dopa). Structural proteins that self‐assemble into cross β‐sheet networks are the suckerins discovered in the sucker ring teeth of squids. Here, light is shed on the wet adhesion of cross‐β motifs by producing recombinant suckerin‐12, naturally lacking Dopa, and investigating its wet adhesion properties. Surprisingly, the adhesion forces measured on mica reach 70 mN m?1, exceeding those measured for all mussel adhesive proteins to date. The pressure‐sensitive adhesion of artificial suckerins is largely governed by their cross‐β motif, as evidenced using control experiments with disrupted cross‐β domains that result in complete loss of adhesion. Dopa is also incorporated in suckerin‐12 using a residue‐specific incorporation strategy that replaces tyrosine with Dopa during expression in Escherichia coli. Although the replacement does not increase the long‐term adhesion, it contributes to the initial rapid contact and enhances the adsorption onto model oxide substrates. The findings suggest that suckerins with supramolecular cross‐β motifs are promising biopolymers for wet‐resistant adhesion.  相似文献   

3.
The exceptional mechanical properties of the byssus—the fibrous holdfast of mussels that provides underwater adhesion—have potential applications in medicine and technology. The catechol–Fe3+–catechol interaction underlies the unique properties of mussel byssus and has emerged as a tool for developing functional hybrid materials such as pH‐responsive, self‐healing gels. Herein, the construction of functional alginate (Alg) film on a solid substrate inspired by mussel byssus is reported. The approach consists of spin‐coating‐assisted deposition of Alg catechols onto a solid substrate and their subsequent crosslinking via catechol–Fe3+–catechol interactions. This yields robust and multilayered Alg films that are resistant to protein adsorption and suppress bacterial adhesion. This method can be used to create antibacterial films for coating implanted medical devices.  相似文献   

4.
The mechanical holdfast of the mussel, the byssus, is processed at acidic pH yet functions at alkaline pH. Byssi are enriched in Fe3+ and catechol‐containing proteins, species with chemical interactions that vary widely over the pH range of byssal processing. Currently, the link between pH, Fe3+‐catechol reactions, and mechanical function is poorly understood. Herein, it is described how pH influences the mechanical performance of materials formed by reacting synthetic catechol polymers with Fe3+. Processing Fe3+‐catechol polymer materials through a mussel‐mimetic acidic‐to‐alkaline pH change leads to mechanically tough materials based on a covalent network fortified by sacrificial Fe3+‐catechol coordination bonds. These findings offer the first direct evidence of Fe3+‐induced covalent cross‐linking of catechol polymers, reveal additional insight into the pH dependence and mechanical role of Fe3+‐catechol interactions in mussel byssi, and illustrate the wide range of physical properties accessible in synthetic materials through mimicry of mussel‐protein chemistry and processing.  相似文献   

5.
Mussels use a variety of 3, 4-dihydroxyphenyl-l-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. Synthetic polypeptide analogues of adhesive mussel foot proteins (specifically mfp-3) are used to study the role of DOPA in adhesion. The mussel-inspired peptide is a random copolymer of DOPA and N(5) -(2-hydroxyethyl)-l-glutamine synthesized with DOPA concentrations of 0-27 mol% and molecular weights of 5.9-7.1 kDa. Thin films (3-5 nm thick) of the mussel-inspired peptide are used in the surface forces apparatus (SFA) to measure the force-distance profiles and adhesion and cohesion energies of the films in an acetate buffer. The adhesion energies of the mussel-inspired peptide films to mica and TiO(2) surfaces increase with DOPA concentration. The adhesion energy to mica is 0.09 μJ m(-2) mol(DOPA) (-1) and does not depend on contact time or load. The adhesion energy to TiO(2) is 0.29 μJ m(-2) mol(DOPA) (-1) for short contact times and increases to 0.51 μJ m(-2) mol(DOPA) (-1) for contact times >60 min in a way suggestive of a phase transition within the film. Oxidation of DOPA to the quinone form, either by addition of periodate or by increasing the pH, increases the thickness and reduces the cohesion of the films. Adding thiol containing polymers between the oxidized films recovers some of the cohesion strength. Comparison of the mussel-inspired peptide films to previous studies on mfp-3 thin films show that the strong adhesion and cohesion in mfp-3 films can be attributed to DOPA groups favorably oriented within or at the interface of these films.  相似文献   

6.
Adhesive hydrogels are widely applied for biological and medical purposes; however, they are generally unable to adhere to tissues under wet/underwater conditions. Herein, described is a class of novel dynamic hydrogels that shows repeatable and long‐term stable underwater adhesion to various substrates including wet biological tissues. The hydrogels have Fe3+‐induced hydrophobic surfaces, which are dynamic and can undergo a self‐hydrophobization process to achieve strong underwater adhesion to a diverse range of dried/wet substrates without the need for additional processes or reagents. It is also demonstrated that the hydrogels can directly adhere to biological tissues in the presence of under sweat, blood, or body fluid exposure, and that the adhesion is compatible with in vivo dynamic movements. This study provides a novel strategy for fabricating underwater adhesive hydrogels for many applications, such as soft robots, wearable devices, tissue adhesives, and wound dressings.  相似文献   

7.
Wearable and implantable bioelectronics are receiving a great deal of attention because they offer huge promise in personalized healthcare. Currently available bioelectronics generally rely on external aids to form an attachment to the human body, which leads to unstable performance in practical applications. Self‐adhesive bioelectronics are highly desirable for ameliorating these concerns by offering reliable and conformal contact with tissue, and stability and fidelity in the signal detection. However, achieving adequate and long‐term self‐adhesion to soft and wet biological tissues has been a daunting challenge. Recently, mussel‐inspired hydrogels have emerged as promising candidates for the design of self‐adhesive bioelectronics. In addition to self‐adhesiveness, the mussel‐inspired chemistry offers a unique pathway for integrating multiple functional properties to all‐in‐one bioelectronic devices, which have great implications for healthcare applications. In this report, the recent progress in the area of mussel‐inspired self‐adhesive bioelectronics is highlighted by specifically discussing: 1) adhesion mechanism of mussels, 2) mussel‐inspired hydrogels with long‐term and repeatable adhesion, 3) the recent advance in development of hydrogel bioelectronics by reconciling self‐adhesiveness and additional properties including conductivity, toughness, transparency, self‐healing, antibacterial properties, and tolerance to extreme environment, and 4) the challenges and prospects for the future design of the mussel‐inspired self‐adhesive bioelectronics.  相似文献   

8.
The forces between mica surfaces confining solutions of spherical and rod‐shaped ZnS nanoparticles (diameter ca. 5 nm) coated with hexadecylamine or octadecylamine surfactant in dodecane have been measured in the absence and after the introduction of trace amounts of water. Initially, or at very low water content, the water molecules cause the nanoparticles to aggregate and adsorb on the hydrophilic mica surfaces, resulting in a long‐range exponentially decaying repulsive force between the surfaces. After longer times (> 20 h), water bridges nucleate and grow between the nanoparticles and mica surfaces, and attractive capillary forces then cause a long‐range attraction and a strong (short‐range) adhesion. It is found, as has previously been observed in nonaqueous bulk colloidal systems, that even trace amounts of water have a profound effect on the interactions and structure of nanoparticle assemblies in thin films, which in turn affect their physical properties. These effects should be considered in the design of thin‐film processing methodologies.  相似文献   

9.
Hydrogel‐based electronics are ideally suited for neural interfaces because they exhibit ultracompliant mechanical properties that match that of excitable tissue in the brain and peripheral nerve. Hydrogel‐based multielectrode arrays (MEAs) can conformably interface with tissues to minimize inflammation and improve the reliability to enhance signal transduction. However, MEA substrates composed of swollen hydrogels exhibit low toughness and poor adhesion when laminated on the tissue surface and also present incompatibilities with processes commonly used in MEA fabrication. Here, a strategy to fabricate an ultracompliant MEA is described based on aqueous‐phase transfer printing. This technique employs redox active adhesive motifs in hygroscopic polymer precursors that simultaneously form hydrogels through sol–gel phase transitions and bond to materials in the underlying microelectronic structures. Specifically, in situ gelation of four‐arm‐polyethylene glycol‐grafted catechol [PEG‐Dopa]4 hydrogels induced by oxidation using Fe3+ produces conformal adhesive contact with the underlying MEA, robust adhesion to electronic sub‐structures, and rapid dissolution of water‐soluble sacrificial release layers. MEAs are integrated on hydrogel‐based substrates to produce free‐standing ultracompliant neural probes, which are then laminated to the surface of the dorsal root ganglia in feline subjects to record single‐unit neural activity.  相似文献   

10.
A general drawback of supramolecular peptide networks is their weak mechanical properties. In order to overcome a similar challenge, mussels have adapted to a pH‐dependent iron complexation strategy for adhesion and curing. This strategy also provides successful stiffening and self‐healing properties. The present study is inspired by the mussel curing strategy to establish iron cross‐link points in self‐assembled peptide networks. The impact of peptide‐iron complexation on the morphology and secondary structure of the supramolecular nanofibers is characterized by scanning electron microscopy, circular dichroism and Fourier transform infrared spectroscopy. Mechanical properties of the cross‐linked network are probed by small angle oscillatory rheology and nanoindentation by atomic force microscopy. It is shown that iron complexation has no influence on self‐assembly and β‐sheet‐driven elongation of the nanofibers. On the other hand, the organic‐inorganic hybrid network of iron cross‐linked nanofibers demonstrates strong mechanical properties comparable to that of covalently cross‐linked network. Strikingly, iron cross‐linking does not inhibit intrinsic reversibility of supramolecular peptide polymers into disassembled building blocks and the self‐healing ability upon high shear load. The strategy described here could be extended to improve mechanical properties of a wide range of supramolecular polymer networks.  相似文献   

11.
The surface properties and self‐adhesion mechanism of self‐healing poly(butyl acrylate) (PBA) copolymers containing comonomers with 2‐ureido‐4[1H]‐pyrimidinone quadruple hydrogen bonding groups (UPy) are investigated using a surface forces apparatus (SFA) coupled with a top‐view optical microscope. The surface energies of PBA–UPy4.0 and PBA–UPy7.2 (with mole percentages of UPy 4.0% and 7.2%, respectively) are estimated to be 45–56 mJ m?2 under dry condition by contact angle measurements using a three probe liquid method and also by contact and adhesion mechanics tests, as compared to the reported literature value of 31–34 mJ m?2 for PBA, an increase that is attributed to the strong UPy–UPy H‐bonding interactions. The adhesion strengths of PBA–UPy polymers depend on the UPy content, contact time, temperature and humidity level. Fractured PBA–UPy films can fully recover their self‐adhesion strength to 40, 81, and 100% in 10 s, 3 h, and 50 h, respectively, under almost zero external load. The fracture patterns (i.e., viscous fingers and highly “self‐organized” parallel stripe patterns) have implications for fabricating patterned surfaces in materials science and nanotechnology. These results provide new insights into the fundamental understanding of adhesive mechanisms of multiple hydrogen‐bonding polymers and development of novel self‐healing and stimuli‐responsive materials.  相似文献   

12.
Most photocrosslinkable hydrogels have inadequacy in either mechanical performance or biodegradability. This issue is addressed by adopting a novel hydrogel design by introducing two different chitosan chains (catechol‐modified methacryloyl chitosan, CMC; methacryloyl chitosan, MC) via the simultaneous crosslinking of carbon–carbon double bonds and catechol‐Fe3+ chelation. This leads to an interpenetrating network of two chitosan chains with high crosslinking‐network density, which enhances mechanical performance including high compressive modulus and high ductility. The chitosan polymers not only endow the hydrogels with good biodegradability and biocompatibility, they also offer intrinsic antibacterial capability. The quinone groups formed by Fe3+ oxidation and protonated amino groups of chitosan polymer further enhance antibacterial property of the hydrogels. Serving as one of the two types of crosslinking mechanisms, the catechol‐Fe3+ chelation can covalently link with amino, thiol, and imidazole groups, which substantially enhance the hydrogel's adhesion to biological tissues. The hydrogel's adhesion to porcine skin shows a lap shear strength of 18.1 kPa, which is 6‐time that of the clinically established Fibrin Glue's adhesion. The hydrogel also has a good hemostatic performance due to the superior tissue adhesion as demonstrated with a hemorrhaging liver model. Furthermore, the hydrogel can remarkably promote healing of bacteria‐infected wound.  相似文献   

13.
An Fe3O4/Cu nanostructured prototype electrode was developed from a 100% bottom‐up approach thanks to an original three‐step electrodeposition procedure that enlists 1) the growth of a ZnO nanocolumnar template, 2) the filling of the template voids by copper prior to the dissolution of the zincite nanopillars, and 3) the plating on the remaining copper nanodots of the Fe3O4 phase. The key technological point is that ZnO readily forms nanorod arrays by self‐assembly when an aqueous solution of ZnII, saturated by dioxygen, is cathodically polarized. The as‐obtained inorganic solid template is sufficiently stable for further deposition steps of any kind (metals, oxides, polymers, and so on) but is easy to remove in both acidic and alkaline media. The self‐supported Fe3O4/Cu nanostructured electrode shows, besides sustained capacity retention, outstanding rate capability when electrochemically tested versus Li. This original and soft process, derived from template‐assisted synthesis, avoids fixing (mechanically) a nanoporous membrane on the substrate, thus, enabling nanostructural design on shapeless surfaces.  相似文献   

14.
Recently, reversible surface superwettability has attracted enormous interest, and methods to shorten the cycle time of transition have also garnered the attention of researchers. Herein, a superhydrophobic, open‐cell graphene network (OCGN) is fabricated via self‐assembly of graphene oxide and vapor ejection. Owing to the special open‐cell microstructure, the OCGNs can be transformed to be superhydrophilic rapidly within only 1 s by air plasma treatment. Moreover, the OCGNs with pure graphene composition have a high conductivity and show an ultrafast Joule heating rate of up to 20 °C s?1 at a voltage of 20 V. By means of this property, for the first time an ultrafast recovery of the superhydrophobicity for OCGNs by self‐induced Joule heating with the shortest time of 1 min is reported. The mechanism of ultrafast, reversible transition is also explored specifically in this study. In addition, the superhydrophilic OCGNs show superoleophobicity in water and their underwater adhesion for oil droplets can be controlled by plasma treatment. Finally, the OCGNs with different oil adhesion properties are fabricated and the underwater oil microdroplet transportation is realized using OCGNs. Therefore, the OCGNs with smart surface can be an excellent candidate for achieving multifunctional superwettability of surfaces.  相似文献   

15.
Hydrogen‐bonding interactions are an important alternative to electrostatic interactions for assembling multilayer thin films of uncharged components. Herein, a new method is reported for rendering such films stable at pH values close to physiological conditions. Multilayer films based on hydrogen bonding are assembled by the alternate deposition of poly[(styrene sulfonic acid)‐co‐(maleic acid)] (PSSMA) and poly(N‐isopropylacrylamide) (PNiPAAm) at pH 2.5. The use of PSSMA results in multilayers that contain free styrene sulfonate groups, as these moieties do not interact with the PNiPAAm functional groups. Subsequent infiltration of a multivalent ion (Ce4+ or Fe3+) leads to an increase in the total film mass, with little impact on the film morphology, as determined by using atomic force microscopy. To examine the film stability, the resulting films have been exposed to elevated pH (7.1). While there is substantial swelling of the multilayers (25 % and 55 % for Ce4+‐ and Fe3+‐stabilized films, respectively), film loss is negligible. This provides a stark contrast with non‐stabilized films, which disassemble almost immediately upon exposure to pH 7.1. This method represents a simple and effective strategy for stabilizing hydrogen‐bonded structures non‐covalently. Further, the multivalent ions also render the films responsive to changes in the local redox environment, as demonstrated by film disassembly after exposure of Fe3+‐treated films to iodide solutions.  相似文献   

16.
The tribological behavior of carbon nanotubes (CNTs) in aqueous humic acid (HA) solutions was studied using a surface forces apparatus (SFA) and shows promising lubricant additive properties. Adding CNTs to the solution changes the friction forces between two mica surfaces from “adhesion controlled” to “load controlled” friction. The coefficient of friction with either single‐walled (SW) or multi‐walled (MW) CNT dispersions is in the range 0.30–0.55 and is independent of the load and sliding velocity. More importantly, lateral sliding promotes a redistribution or accumulation, rather than squeezing out, of nanotubes between the surfaces. This accumulation reduced the adhesion between the surfaces (which generally causes wear/damage of the surfaces), and no wear or damage was observed during continuous shearing experiments that lasted several hours even under high loads (pressures ~10 MPa). The frictional properties can be understood in terms of the Cobblestone Model where the friction force is related to the fraction of the adhesion energy dissipated during impacts of the nanoparticles. We also develop a simple generic model based on the van der Waals interactions between particles and surfaces to determine the relation between the dimensions of nanoparticles and their tribological properties when used as additives in oil‐ or water‐based lubricants.  相似文献   

17.
Current fluorescence‐based anti‐counterfeiting strategies primarily encode information onto single 2D planes and underutilize the possibility of encrypting data inside 3D structures to achieve multistage data security. Herein, a fluorescent‐hydrogel‐based 3D anti‐counterfeiting platform is demonstrated, which extends data encryption capability from single 2D planes to complex 3D hydrogel origami geometries. The materials are based on perylene‐tetracarboxylic‐acid‐functionalized gelatin/poly(vinyl alcohol) hydrogels, which simultaneously show Fe3+‐responsive fluorescence quenching, borax‐triggered shape memory, and self‐healing properties. By employing an origami technique, various complex 3D hydrogel geometries are facilely fabricated. On the basis of these results, a 3D anti‐counterfeiting platform is demonstrated, in which the data printed by using Fe3+ as the ink are safely protected inside complex 3D hydrogel origami structures. In this way, the encrypted data cannot be read until after specially predesigned procedures (both the shape recovery and UV light illumination actions), indicating higher‐level information security than the traditional 2D counterparts. This facile and general strategy opens up the possibility of utilizing 3D fluorescent hydrogel origami for data information encryption and protection.  相似文献   

18.
There is an urgent need for biomaterials that support tissue healing, particularly neuronal regeneration. In a medium throughput screen novel self‐assembling peptide (SAP) sequences that form fibrils and stimulated nerve fiber growth of peripheral nervous system (PNS)‐derived neurons are identified. Based on the peptide sequences and fibril morphologies and by applying rational data‐mining, important structural parameters stimulating neuronal activity are elucidated. Three SAPs (SAP1e, SAP2e, and SAP5c) enhance adhesion and growth of PNS neurons. These SAPs form 2D and 3D matrices that serve as bioactive scaffolds stimulating cell adhesion and growth. The newly discovered SAPs also support the growth of CNS neurons and glia cells. Subsequently, the potential of SAPs to enhance PNS regeneration in vivo is analyzed. For this, the facial nerve driving whisker movement in mice is injured. Notably, SAPs persist for up to 3 weeks in the injury site indicating highly adhesive properties and stability. After SAP administration, more motor neurons incorporating markers for successive regeneration are observed. Recovery of whisker movement is elevated in SAP‐injected mice. In summary, short peptides that form fibrils are identified and the adhesion, growth, and regeneration of neurons have been efficiently enhanced without the necessity to attach hormones or growth factors.  相似文献   

19.
Understanding how bacteria adhere to a surface is a critical step in the development of novel materials and coatings to prevent bacteria forming biofilms. Here, surface plasmon resonance (SPR) spectroscopy, in combination with self‐assembled monolayers (SAMs) that have different backbone structures and/or functional groups, is used for the first time to study the initial stages of bacterial adhesion to surfaces (i.e., initial interaction of cells with a surface, a process governed by van der Waals, electrostatic, and hydrophobic interactions). The work highlights SPR spectroscopy as a powerful and unique approach to probe bacterial adhesion in real time. SPR spectral data reveal different kinetics of adhesion for the interaction of two marine bacterial species (Marinobacter hydrocarbonoclasticus and Cobetia marina) to a range of organosulfur SAMs. Furthermore, the extent of adhesion is dependent on the backbone structures and functional groups of the SAMs. The role of extracellular polymeric substances (EPS) in bacterial adhesion is also investigated. Pre‐conditioning experiments with cell‐free culture supernatants, containing planktonic EPS, allow quantification of the amount adsorbed onto surfaces and directly account for the impact of EPS adsorption on bacterial adhesion in the assay. While the physicochemical characteristics of the surfaces play a significant role in determining bacterial cell adhesion for low levels of conditioning by planktonic EPS, greater levels of conditioning by EPS reduce the difference between surfaces.  相似文献   

20.
Developing physical double‐network (DN) removable hydrogel adhesives with both high healing efficiency and photothermal antibacterial activities to cope with multidrug‐resistant bacterial infection, wound closure, and wound healing remains an ongoing challenge. An injectable physical DN self‐healing hydrogel adhesive under physiological conditions is designed to treat multidrug‐resistant bacteria infection and full‐thickness skin incision/defect repair. The hydrogel adhesive consists of catechol–Fe3+ coordination cross‐linked poly(glycerol sebacate)‐co‐poly(ethylene glycol)‐g‐catechol and quadruple hydrogen bonding cross‐linked ureido‐pyrimidinone modified gelatin. It possesses excellent anti‐oxidation, NIR/pH responsiveness, and shape adaptation. Additionally, the hydrogel presents rapid self‐healing, good tissue adhesion, degradability, photothermal antibacterial activity, and NIR irradiation and/or acidic solution washing‐assisted removability. In vivo experiments prove that the hydrogels have good hemostasis of skin trauma and high killing ratio for methicillin‐resistant staphylococcus aureus (MRSA) and achieve better wound closure and healing of skin incision than medical glue and surgical suture. In particular, they can significantly promote full‐thickness skin defect wound healing by regulating inflammation, accelerating collagen deposition, promoting granulation tissue formation, and vascularization. These on‐demand dissolvable and antioxidant physical double‐network hydrogel adhesives are excellent multifunctional dressings for treating in vivo MRSA infection, wound closure, and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号