首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Although pH and reduction responses are widely applied on gene and drug delivery system, the undefined molecule and disconnected response to corresponding transfection barriers still hamper their further application. Here, a multistage‐responsive lipopeptides polycation‐DNA nanoparticles (namely KR‐DC) as gene vector is designed, consisting of three functional modules. It provides the following outstanding “smart” characteristics: i) facile manufacture and ease to adjust ingredients for different conditions, ii) negatively charged surface to remain stable and increase biocompatibility in physiological environment, iii) pH‐triggered cascading charge‐conversion corresponding to tumor extracellular pH and endo/lysosomal pH, iv) the first stage of charge reversal for uptake enhancement at tumor site, v) the second stage of charge conversion for rapid endosomal escape, vi) the third stage of redox degradation aiming at DNA controlled release and nuclear entry, vii) cell‐penetrating peptides mimicking arginine‐rich periphery targeting to membrane penetration capacity improvement, and viii) lipid forming hydrophobic cavity for potential fat‐soluble drug encapsulation. Finally, KR‐DC nanoparticles achieve significantly enhanced in vitro transfection efficiency by almost four orders of magnitude in manual tumor environment with reduced side effects and satisfying gene expression in Hela xenograft tumor model in vivo.  相似文献   

2.
Nanocarriers capable of circumventing various biological barriers between the site of administration and the therapeutic target hold great potential for cancer treatment. Herein, a redox‐sensitive, hyaluronic acid‐decorated graphene oxide nanosheet (HSG) is developed for tumor cytoplasm‐specific rapid delivery using near‐infrared (NIR) irradiation controlled endo/lysosome disruption and redox‐triggered cytoplasmic drug release. Hyaluronic acid (HA) modification through redox‐sensitive linkages permits HSG a range of advantages over the standard graphene oxide, including high biological stability, enhanced drug‐loading capacity for aromatic molecules, HA receptor‐mediated active tumor targeting, greater NIR absorption and thermal energy translation, and a sharp redox‐dependent response for accelerated cargo release. Results of in vivo and in vitro testing indicate a high loading of doxorubicin (DOX) onto HSG. Selective delivery to HA‐receptor overexpressing tumors is achieved through passive and active targeting with minimized unfavorable interactions with blood components. Cytoplasm‐specific DOX delivery is then achieved through NIR controlled endo/lysosome disruption along with redox‐triggered release of DOX in glutathione rich areas. HSG's specificity is resulted in enhanced cytotoxicity of chemotherapeutics with minimal collateral damage to healthy tissues in a xenograft animal tumor model. HSG is validated the programmed delivery of therapeutic agents in a spatiotemporally controlled manner to overcome multiple biological barriers results in specific and enhanced cancer treatment.  相似文献   

3.
Small interfering RNA (siRNA) has significant potential to evolve into a new class of pharmaceutical inhibitors, but technologies that enable robust, tissue‐specific intracellular delivery must be developed before effective clinical translation can be achieved. A pH‐responsive, smart polymeric nanoparticle (SPN) with matrix metalloproteinase (MMP)‐7‐dependent proximity‐activated targeting (PAT) is described here. The PAT‐SPN is designed to trigger cellular uptake and cytosolic delivery of siRNA once activated by MMP‐7, an enzyme whose overexpression is a hallmark of cancer initiation and progression. The PAT‐SPN is composed of a corona‐forming polyethylene glycol (PEG) block, an MMP‐7‐cleavable peptide, a cationic siRNA‐condensing block, and a pH‐responsive, endosomolytic terpolymer block that drives self‐assembly and forms the PAT‐SPN core. With this novel design, the PEG corona shields cellular interactions until it is cleaved in MMP‐7‐rich environments, shifting the SPN ζ‐potential from +5.8 to +14.4 mV and triggering a 2.5 fold increase in carrier internalization. The PAT‐SPN exhibits pH‐dependent membrane disruptive behavior that enables siRNA escape from endo‐lysosomal pathways. Intracellular siRNA delivery and knockdown of the model enzyme luciferase in R221A‐Luc mammary tumor cells is significantly increased by MMP‐7 pre‐activation (p < 0.05). These combined data indicate that the PAT‐SPN provides a promising new platform for tissue‐specific, proximity‐activated siRNA delivery to MMP‐rich pathological environments.  相似文献   

4.
A hybrid nanocomposite comprised by porous silicon nanoparticles and a stimuli responsive polymeric material, polyethylene glycol‐block‐poly(L‐histidine), is spontaneously formed by nanoprecipitation in a flow‐focusing microfluidic chip. The nanocomposite presents a novel hybrid compound micelle structure with a great robustness for therapeutic applications. Therefore, the nanocomposite is developed and tested as a “smart” multistage drug delivery system (MDDS) in response to some of the current problems that cancer treatment presents. Based on the stimuli‐responsive behavior of the nanocomposite, a chemotherapeutic agent is successfully loaded into the nanosystem and released upon changes in the pH‐values. The nanocomposite demonstrates enhanced stability in plasma, narrow size distribution, improved surface smoothness, and high cytocompatibility. Furthermore, the nanocomposite presents reduced nanoparticle internalization by phagocytic macrophage cells and pH‐dependent cell growth inhibition capacity. Overall, the developed hybrid nanocomposite shows very promising features for its further development as a “smart” pH‐responsive MDDS.  相似文献   

5.
6.
It has been a challenge to incorporate multiple features into a single gene carrier system to overcome numerous hurdles during the gene delivery. Herein, a supramolecular approach for building a multifunctional gene carrier system is demonstrated with the functions of disulfide bond based reduction‐responsive degradation and zwitterionic phosphorylcholine based extracellular stabilization and favorable cellular uptake. The gene carrier system is self‐assembled from two molecular building blocks: one host polymer, which is a redox‐sensitive β‐cyclodextrin based cationic star polymer, and one guest polymer, which is adamantyl end capped zwitterionic phosphorylcholine based polymer. The host and guest polymers self‐assemble to integrate multiple functions into one system, based on the host‐guest interaction between β‐cyclodextrin and adamantyl moieties. With the rational designs of both building blocks, the supramolecular gene carrier system possesses excellent protein stability, serum tolerance, cellular uptake and intracellular DNA release properties, and also low cytotoxicity. These features work simultaneously to achieve exceptionally high gene transfection efficiency, which is proven in MCF‐7 cell cultures using luciferase and green fluorescence protein reporter genes. Finally, the supramolecular gene carrier is applied to deliver the therapeutic p53 anti‐cancer gene in MCF‐7 cells, showing great potential for cancer gene therapy application.  相似文献   

7.
In order to create advanced functional nanocarriers for efficient gene therapy, novel intracellular microenvironment‐sensitive fluorescence label‐free nanostructured dendrimer‐like silica hybrid nanocarriers are developed for traceable, effective, and safe gene delivery. Dendrimer‐like mesoporous silica nanoparticles (DMSNs) with center‐radial large pores are covalently modified with short polyethyleneimine (PEI) for efficient gene loading and binding. Autofluorescent and biodegradable PEI (AC‐PEI) responsive to the intracellular microenvironment are then coated on the gene‐loaded nanoparticles for inhibiting gene leakage from the carriers. Moreover, AC‐PEI coating not only endows intracellular microenvironment‐responsive gene release property, but also allows monitoring the gene delivery process in the absence of external labelling, owing to the pH‐ and GSH‐responsive autofluorescence and biodegradability of AC‐PEI. The resultant nanocarriers show high gene loading capacity, low cytotoxicity, stimuli‐responsive gene release, label‐free, and simultaneous fluorescence tracking, and high gene silencing capability. Thus, these developed nanocarriers hold substantial and promising potential as effective and safe gene‐delivery carriers for future scientific investigation and practical implications in gene therapy.  相似文献   

8.
To achieve on‐demand drug release, mesoporous silica nanocarriers as antitumor platforms generally need to be gated with stimuli‐responsive capping agents. Herein, a “smart” mesoporous nanocarrier that is gated by the drug itself through a pH‐sensitive dynamic benzoic–imine covalent bond is demonstrated. The new system, which tactfully bypasses the use of auxiliary capping agents, could also exhibit desirable drug release at tumor tissues/cells and enhanced tumor inhibition. Moreover, a facile dynamic PEGylation via benzoic–imine bond further endows the drug‐self‐gated nanocarrier with tumor extracellular pH‐triggered cell uptake and improves therapeutic efficiency in vivo. In short, the paradigm shift in capping agents here will simplify mesoporous nanomaterials as intelligent drug carriers for cancer therapy. Moreover, the self‐gated strategy in this work also shows general potential for self‐controlled delivery of natural biomolecules, for example, DNA/RNA, peptides, and proteins, due to their intrinsic amino groups.  相似文献   

9.
To satisfy the ever‐growing demand in bacterial infection therapy and other fields of science, great effort is being devoted to the development of methods to precisely control drug release and achieve targeted use of an active substance at the right time and place. Here, a new strategy for bacterial infection combination therapy based on the light‐responsive zeolitic imidazolate framework (ZIF) is reported. A pH‐jump reagent is modified into the porous structure of ZIF nanoparticles as a gatekeeper, allowing the UV‐light (365 nm) responsive in situ production of acid, which subsequently induces pH‐dependent degradation of ZIF and promotes the release of the antibiotic loaded in the mesopores. The combination of the UV‐light, the pH‐triggered precise antibiotic release, and the zinc ions enables the light‐activated nanocomposite to significantly inhibit bacteria‐induced wound infection and accelerate wound healing, indicating a switchable and synergistic antibacterial effect. The light irradiated accumulation of acid ensures the controlled release of antibiotic and controlled degradation of ZIF, suggesting the therapeutic potential of the metal–organic frameworks‐based smart platform for controlling bacterial infection.  相似文献   

10.
Functional materials capable of responding to stimuli intrinsic to diseases are extremely important for specific drug delivery at the disease site. However, developing on‐demand stimulus‐responsive vectors for targeted delivery is highly challenging. Here, a stimulus‐responsive fluorinated bola‐amphiphilic dendrimer is reported for on‐demand delivery of small interfering RNA (siRNA) in response to the characteristic high level of reactive oxygen species (ROS) in cancer cells. This dendrimer bears a ROS‐sensitive thioacetal in the hydrophobic core and positively charged poly(amidoamine) dendrons at the terminals, capable of interacting and compacting the negatively charged siRNA into nanoparticles to protect the siRNA and promote cellular uptake. The ROS‐sensitive feature of this dendrimer boosts specific and efficient disassembly of the siRNA/vector complexes in ROS‐rich cancer cells for effective siRNA delivery and gene silencing. Moreover, the fluorine tags in the vector enable 19F‐NMR analysis of the ROS‐responsive delivery process. In addition, this ingenious and distinct bola‐amphiphilic dendrimer is also able to combine the advantageous delivery features of both lipid and dendrimer vectors. Therefore, it represents an innovative on‐demand stimulus‐responsive delivery platform.  相似文献   

11.
Efficient intracellular delivery of protein drugs and tumor‐specific activation of protein functions are critical toward anti‐cancer protein therapy. However, an omnipotent protein delivery system that can harmonize the complicated systemic barriers as well as spatiotemporally manipulate protein function is lacking. Herein, an “all‐functions‐in‐one” nanocarrier doped with photosensitizer (PS) is developed and coupled with reactive oxygen species (ROS)‐responsive, reversible protein engineering to realize cancer‐targeted protein delivery, and spatiotemporal manipulation of protein activities using long‐wavelength visible light (635 nm) at low power density (5 mW cm?2). Particularly, RNase A is caged with H2O2‐cleavable phenylboronic acid to form 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)benzyl carbonate (NBC)‐modified RNase (RNBC), which is encapsulated in acid‐degradable, ketal‐crosslinked PEI (KPEI)‐based nanocomplexes (NCs) coated with PS‐modified hyaluronic acid (HA). Such NCs harmonize the critical processes for protein delivery, wherein HA coating renders NCs with long blood circulation and cancer cell targeting, and KPEI enables endosomal escape as well as acid‐triggered intracellular RNBC release. Tumor‐specific light irradiation generates H2O2 to kill cancer cells and restore the protein activity, thus achieving synergistic anti‐cancer efficacy. It is the first time to photomanipulate protein functions by coupling ROS‐cleavable protein caging with PS‐mediated ROS generation, and the “all‐functions‐in‐one” nanocarrier represents a promising example for the programmed anti‐cancer protein delivery.  相似文献   

12.
An aneurysm is a life‐threatening vascular disease. Embolization with shape memory (SM) hydrogel coils is promising for the treatment of the intractable aneurysms. However, single temperature‐triggered SM is softened in a catheter, and delivery of multiple coils is required, which may clog the catheter and complicate operation procedure. Here, a radiopaque temperature/pH dual responsive shape memory hydrogel with self‐tuned stiffness is fabricated by copolymerizing acrylonitrile (AN, dipole–dipole interaction monomer), N‐acryloyl 2‐glycine (ACG, pH‐sensitive H‐bonding monomer), and polyethylene glycol diacrylate. Under slightly acidic conditions without eliciting cytotoxicity, additional supramolecular PACG hydrogen bonds combined with cyano dipole–dipole pairings contribute to the body temperature‐triggered SM effect with an unprecedented high 430 MPa (10 °C) and 16 MPa (37 °C) Young's modulus. A carotid aneurysm is created in a dog to test the embolization of this SM hydrogel. At 37 °C, the hydrogel's high stiffness ensures its smooth delivery through a catheter. After being transported into the aneurysm sac, secondary swelling occurs concurrent with appropriate decrease of stiffness upon contacting neutral blood, thus enhancing the packing density and reducing recanalization rate and delivery times. This stiffness adaptive SM hydrogel holds its great potential as permanent embolic agents for treating a variety of aneurysms.  相似文献   

13.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

14.
A novel photo‐responsive protein–graphene–protein (PGP) capsule that doubles as a photothermal agent with core/shell structure is constructed by anchoring reduced graphene oxide nanosheets on one‐component protein (lactoferrin) shell through a double emulsion method. PGP capsules can transport fully concealed hydrophilic anticancer cargo, doxorubicin (Dox), with a large payload (9.43 μmol g‐1) to be later unloaded in a burst‐like manner by photo‐actuation triggered by near‐infrared irradiation. Being biocompatible yet with a high cancer cell targeting efficiency, PGP capsules have successfully eradicated subcutaneous tumors in 10 d following a single 5 min NIR irradiation without distal damage. Besides, the photochemothermal therapy of PGP capsules eradicates tumor cells not only in the light‐treating area but also widely light‐omitted tumor cells, overcoming the tumor recurrence due to efficient cell killing efficacy. These results demonstrate that the PGP capsule is a potential new drug delivery platform for local‐targeting, on‐demand, photoresponsive, combined chemotherapy/hyperthermia for tumor treatment and other biomedical applications.  相似文献   

15.
Synergistic therapy that combines chemo‐, gene‐, or photothermal means shows great potential for enhancing the therapeutic effects on cancers. Tumor‐targeted nanoparticles based on a doxorubicin (DOX)‐gated mesoporous silica nanocore (MSN) encapsulated with permeability glycoprotein (P‐gp) small interfering RNA (siRNA) and a polydopamine (PDA) outer layer for DOX loading and folic acid decoration are designed. The multifunctional nanoplatform tactfully integrates chemo‐ (DOX), gene‐ (P‐gp siRNA), and photothermal (PDA layer) substances in one system. In vitro results reveal that DOX release behaviors are both pH‐ and thermal‐responsive and the release of co‐delivered P‐gp siRNA is also pH‐dependent due to the pH‐cleavable DOX gatekeeper on MSN. In addition, due to the near‐infrared light‐responsive PDA outer layer and folic acid conjugation, the nanoparticles exhibit outstanding photothermal activity and selective cell targeting ability. Subsequently, in vitro and in vivo antitumor experiments both demonstrate the enhanced antitumor efficacy of the multifunctional nanoparticles, indicating the significance of synergistic therapy combining chemo‐, gene‐, and photothermal treatments in one system.  相似文献   

16.
The inability of the heart to recover from an ischemic insult leads to the formation of fibrotic scar tissue and heart failure. From the therapeutic strategies under investigation, cardiac regeneration holds the promise of restoring the full functionality of a damaged heart. Taking into consideration the presence of vast numbers of fibroblasts and myofibroblasts in the injured heart, direct fibroblast reprogramming into cardiomyocytes using small drug molecules is an attractive therapeutic option to replenish the lost cardiomyocytes. Here, a spermine‐acetalated dextran‐based functional nanoparticle is developed for pH‐triggered drug delivery of two poorly water soluble small molecules, CHIR99021 and SB431542, both capable of increasing the efficiency of direct reprogramming of fibroblast into cardiomyocytes. Upon functionalization with polyethylene glycol and atrial natriuretic peptide, the biocompatibility of the nanosystem is improved, and the cellular interactions with the cardiac nonmyocytes are specifically augmented. The dual delivery of the compounds is verified in vitro, and the compounds exerted concomitantly anticipate biological effects by stabilizing β‐catenin (CHIR99021) and by preventing translocation of Smad3 to the nucleus of (myo)fibroblasts (SB431542). These observations highlight the potential of this nanoparticle‐based system toward improved drug delivery and efficient direct reprogramming of fibroblasts into cardiomyocyte‐like cells, and thus, potential cardiac regeneration therapy.  相似文献   

17.
Silk protein from the silkworm Bombyx mori has excellent chemical and mechanical stability, biocompatibility, and optical properties. Additionally, when the protein is purified and reformed into materials, the biochemical functions of dopants entrained in the protein matrix are stabilized and retained. This unique combination of properties make silk a useful multifunctional material platform for the development of sensor devices. An approach to increase the functions of silk‐based devices through chemical modifications to demonstrate an active optofluidic device to sense pH is presented. Silk protein is chemically modified with 4‐aminobenzoic acid to add spectral‐color‐responsive pH sensitivity. The functionalized silk is combined with the elastomer poly(dimethyl siloxane) in a single microfluidic device. The microfluidic device allows spatial and temporal control of the delivery of analytic solutions to the system to provide the optical response of the optofluidic device. The modified silk is stable and spectrally responsive over a wide pH range from alkaline to acidic.  相似文献   

18.
In the present work, a method is proposed to assemble pH‐responsive, flower‐like micelles that can expose a targeting unit at their periphery upon a decrease in pH. The micelles are composed of a novel biotinylated triblock copolymer of poly(εε‐caprolactone)‐block‐poly(ethylene oxide)‐block‐poly(2‐vinylpyridine) (PCL‐b‐PEO‐b‐P2VP) and the non‐biotinylated analogue. The block copolymers are synthesized by sequential anionic and ring‐opening polymerization. The pH‐dependent micellization behaviour in aqueous solution of the triblock copolymers developed is studied using dynamic light scattering, zeta potential, transmission electron microscopy (TEM), and fluorimetric measurements. The shielding of the biotin at neutral pH and their availability at the micelle surface upon protonation is established by TEM and surface plasmon resonance with avidin and streptavidin‐coated gold surfaces. The preliminary stealthy behavior of these pH‐responsive micelles is examined using the complement activation (CH50) test.  相似文献   

19.
Recently, antimicrobial photodynamic therapy (aPDT) has been considered as an attractive treatment option for biofilms ablation. However, even very efficient photosensitizers (PSs) still need high light doses and PS concentrations to eliminate biofilms due to the limited penetration and diffusion of PSs in biofilms. Moreover, the hypoxic microenvironment and rapid depletion of oxygen during PDT severely limit their therapeutic effects. Herein, for the first time, a porphyrin‐based metal organic framework (pMOF) dots–based nanoplatform with effective biofilm penetration, self‐oxygen generation, and enhanced photodynamic efficiency is synthesized for bacterial biofilms eradication. The function‐adaptive nanoplatform is composed of pMOF dots encapsulated by human serum albumin–coated manganese dioxide (MnO2). The pH/H2O2‐responsive decomposition of MnO2 in biofilms triggers the release of ultra‐small and positively charged pMOF dots and simultaneously generates O2 in situ to alleviate hypoxia for biofilms. The released pMOF dots with high reactive oxygen species yield can effectively penetrate into biofilms, strongly bind with bacterial cell surface, and ablate bacterial biofilms. Importantly, such a nanoplatform can realize great therapeutic outcomes for treatment of Staphylococcus aureus–infected subcutaneous abscesses in vivo without damage to healthy tissues, which offers a promising strategy for efficient biofilms eradication.  相似文献   

20.
Over the past few years, silica‐based nanotheranostics have demonstrated their great potential for nano/biomedical applications. However, the uncontrollable and difficult degradability of their pure silica framework and long‐time in vivo retention still cause severe and unpredictable toxicity risks. Therefore, it is highly desirable to design and synthesize materials with safer framework structures and compositions. To this aim, the introduction of disulfide bonds into the silica framework can not only maintain high stability in physiological conditions, but also achieve a stimuli‐responsive biodegradation triggered by intracellular reducing microenvironment in living cells, especially in cancer cells. Once nanotheranostics with disulfide (i.e., thioether)‐bridged silsesquioxane framework are taken up by tumor cells via passive or active targeting, the disulfide bonds in the hybrid silica matrix can be cleaved by a high concentration of intracellular glutathione, enabling redox‐triggered biodegradation of the nanosystems for both concomitant release of the loaded therapeutic cargo and in vivo clearance. It is envisioned that such hybrid materials comprised of disulfide‐bridged silsesquioxane frameworks can become promising responsive and biodegradable nanotheranostics. This review summarizes the recent advances in the synthesis of hybrid organosilicas with disulfide‐bridged silsesquioxane frameworks, and discuss their redox‐triggered biodegradation behaviors combined with their biocompatibility and nanobiomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号