首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Development of biodegradable nanomaterials for drug delivery and cancer theranostics has attracted great attention in recent years. In this work, polydopamine (PDA), a biocompatible polymer, is developed as a promising carrier for loading of both radionuclides and an anticancer drug to realize nuclear‐imaging‐guided combined radioisotope therapy (RIT) and chemotherapy of cancer in one system. It is found that PDA nanoparticles after modification with poly(ethylene glycol) (PEG) can successfully load several different radionuclides such as 99mTc and 131I, as well as an anticancer drug doxorubicin (DOX). While labeling PDA‐PEG with 99mTc (99mTc‐PDA‐PEG) enables in vivo single photon emission computed tomography imaging, nanoparticles co‐loaded with 131I and DOX (131I‐PDA‐PEG/DOX) can be utilized for combined RIT and chemotherapy, which offers effective cancer treatment efficacy in a remarkably synergistic manner, without rendering significant toxicity to the treated animals. Therefore, this study presents an interesting class of biocompatible nanocarriers, which allow the combination of RIT and chemotherapy, the two extensively applied cancer therapeutic strategies, promising for future clinic translations in cancer treatment.  相似文献   

2.
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) can effectively destroy cancer cells under tissue‐penetrating near‐infrared light (NIR) light. Herein, we synthesize manganese (Mn2+)‐doped UCNPs with strong red light emission at ca. 660 nm under 980 nm NIR excitation to activate Chlorin e6 (Ce6), producing singlet oxygen (1O2) to kill cancer cells. A layer‐by‐layer (LbL) self‐assembly strategy is employed to load multiple layers of Ce6 conjugated polymers onto UCNPs via electrostatic interactions. UCNPs with two layers of Ce6 loading (UCNP@2xCe6) are found to be optimal in terms of Ce6 loading and 1O2 generation. By further coating UCNP@2xCe6 with an outer layer of charge‐reversible polymer containing dimethylmaleic acid (DMMA) groups and polyethylene glycol (PEG) chains, we obtain a UCNP@2xCe6‐DMMA‐PEG nanocomplex, the surface of which is negatively charged and PEG coated under pH 7.4; this could be converted to have a positively charged naked surface at pH 6.8, significantly enhancing cell internalization of nanoparticles and increasing in vitro NIR‐induced PDT efficacy. We then utilize the intrinsic optical and paramagnetic properties of Mn2+‐doped UCNPs for in vivo dual modal imaging, and uncover an enhanced retention of UCNP@2xCe6‐DMMA‐PEG inside the tumor after intratumoral injection, owing to the slightly acidic tumor microenvironment. Consequently, a significantly improved in vivo PDT therapeutic effect is achieved using our charge‐reversible UCNP@2xCe6‐DMMA‐PEG nanoparticles. Finally, we further demonstrate the remarkably enhanced tumor‐homing of these pH‐responsive charge‐switchable nanoparticles in comparison to a control counterpart without pH sensitivity after systemic intravenous injection. Our results suggest that UCNPs with finely designed surface coatings could serve as smart pH‐responsive PDT agents promising in cancer theranostics.  相似文献   

3.
The efficacy of radiation therapy (RT) is often limited by the poor response of hypoxia inside most solid tumors. The development of a theranostic nanoplatform for precision‐imaging‐guided sensitized RT for tumor hypoxia is still challenging. Herein, the creation of hypoxia‐targeted dendrimer‐entrapped gold nanoparticles complexed with gadolinium(III) (Gd‐Au DENPs‐Nit) for dual‐mode CT/MR imaging and sensitized RT of hypoxic tumors is reported. In this work, generation 5 poly(amidoamine) dendrimers are partially conjugated with Gd(III) chelator, entrapped with Au nanoparticles, and conjugated with hypoxia‐targeting agent nitroimidazole via a polyethylene glycol linker, and ending with chelation of Gd(III) and conversion of their leftover amine termini to acetamides. The designed dendrimer‐based nanohybrids with 3.2 nm Au cores exhibit an excellent X‐ray attenuation effect, acceptable r1 relaxivity (1.32 mM?1 s?1), and enhanced cellular uptake in hypoxic cancer cells, affording efficient dual‐mode CT/MR imaging of tumor hypoxia. Under X‐ray irradiation, the Gd‐Au DENPs‐Nit nanohybrids can produce reactive oxygen species, promote DNA damage, and prevent DNA repair, facilitating sensitized RT of hypoxic cancer cells in vitro and tumor hypoxia in vivo. The developed hypoxia‐targeted dendrimer‐based nanohybrids may be employed as both contrast agents and nanosensitizers for precision tumor hypoxia imaging and sensitized tumor RT.  相似文献   

4.
Physical therapies including photodynamic therapy (PDT) and photothermal therapy (PTT) can be effective against diseases that are resistant to chemotherapy and remain as incurable malignancies (for example, multiple myeloma). In this study, to enhance the treatment efficacy for multiple myeloma using the synergetic effect brought about by combining PDT and PTT, iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs) with high photostability are developed. They can generate both 1O2 and heat with irradiation from a light‐emitting diode (LED), acting as photosensitizers for PDT/PTT combination treatment. ISP HNPs exhibit the external heavy atom effect, which significantly improves both the quantum yield for 1O2 generation and the light‐to‐heat conversion efficiency. The in vivo fluorescence imaging demonstrates that ISP HNPs, modified with folic acid and polyethylene glycol (FA‐PEG‐ISP HNPs), locally accumulate in the tumor after 18 h of their intravenous injection into tumor‐bearing mice. The LED irradiation on the tumor area of the mice injected with FA‐PEG‐ISP HNPs causes necrosis of the tumor tissues, resulting in the inhibition of tumor growth and an improvement in the survival rate.  相似文献   

5.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm ?1 s?1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm –1 s?1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.  相似文献   

6.
Photothermal therapy (PTT), as a minimally invasive and highly effective cancer treatment approach, has received widespread attention in recent years. Tremendous effort has been devoted to explore various types of photothermal agents with high near‐infrared (NIR) absorbance for PTT cancer treatment. Despite many exciting progresses in the area, effective yet safe photothermal agents with good biocompatibility and biodegradability are still highly desired. In this work, a new organic PTT agent based on polyethylene glycol (PEG) coated micelle nanoparticles encapsulating a heptamethine indocyanine dye IR825 is developed, showing a strong NIR absorption band and a rather low quantum yield, for in vivo photothermal treatment of cancer. It is found that the IR825–PEG nanoparticles show ultra‐high in vivo tumor uptake after intravenous injection, and appear to be an excellent PTT agent for tumor ablation under a low‐power laser irradiation, without rendering any appreciable toxicity to the treated animals. Compared with inorganic nanomaterials and conjugated polymers being explored in PTT, the NIR‐absorbing micelle nanoparticles presented here may have the least safety concern while showing excellent treatment efficacy, and thus may be a new photothermal agent potentially useful in clinical applications.  相似文献   

7.
Exploiting exogenous and endogenous stimulus‐responsive degradable nanoparticles as drug carriers can improve drug delivery systems (DDSs). The use of hollow nanoparticles may facilitate degradation, and combination of DDS with photodynamic therapy (PDT) and photothermal therapy (PTT) may enhance the anticancer effects of treatments. Here, a one‐pot synthetic method is presented for an anticancer drug (doxorubicin [DOX]) and photosensitizer‐containing hollow hybrid nanoparticles (HNPs) with a disulfide and siloxane framework formed in response to exogenous (light) and endogenous (intracellular glutathione [GSH]) stimuli. The hollow HNPs emit fluorescence within the near‐infrared window and allow for the detection of tumors in vivo by fluorescence imaging. Furthermore, the disulfides within the HNP framework are cleaved by intracellular GSH, deforming the HNPs. Light irradiation facilitates penetration of GSH into the HNP framework and leads to the collapse of the HNPs. As a result, DOX is released from the hollow HNPs. Additionally, the hollow HNPs generate singlet oxygen (1O2) and heat in response to light; thus, fluorescence imaging of tumors combined with trimodal therapy consisting of DDS, PDT, and PTT is feasible, resulting in superior therapeutic efficacy. Thus, this method may have several applications in imaging and therapeutics in the future.  相似文献   

8.
Despite extensive use of radiotherapy in cancer treatment, there has been huge demand to improve its efficacy and accuracy in tumor destruction. To this end, nanoparticle‐based radiosensitizers, particularly those with high‐Z elements, have been explored to enhance radiotherapy. Meanwhile, imaging is an essential tool prior to the individual planning of precise radiotherapy. Here, hollow tantalum oxide (H‐TaOx) nanoshells are prepared using a one‐pot template‐free method and then modified with polyethylene glycol (PEG), yielding H‐TaOx‐PEG nanoshells for imaging‐guided synergistically enhanced radiotherapy. H‐TaOx‐PEG nanoshells show strong intrinsic binding with metal ions such as Fe3+ and 99mTc4+ upon simple mixing, enabling magnetic resonance imaging and single photon emission computed tomography imaging, respectively, which are able to track in vivo distribution of those nanoshells and locate the tumor. With mesoporous shells and large cavities, those H‐TaOx‐PEG nanoshells show efficient loading of 7‐ethyl‐10‐hydroxycamptothecin (SN‐38), a hydrophobic chemotherapeutic drug. By means of the radiosensitization effect of Ta to deposit X‐ray energy inside tumors, as well as SN‐38‐induced cell cycle arrest into radiation‐sensitive phases, H‐TaOx‐PEG@SN‐38 can offer remarkable synergistic therapeutic outcome in the combined chemoradiotherapy. Without appreciable systemic toxicity, such hollow‐TaOx nanostructure may therefore find promising applications in multimodal imaging and enhanced cancer radiotherapy.  相似文献   

9.
Mitochondria are recognized as the ideal target for cancer treatment because they play a central role in oxidative metabolism and apoptosis. In this work, a mitochondria‐targeted near‐infrared (NIR) photosensitizer (PS) for synchronous cancer photodynamic therapy (PDT) and photothermal therapy (PTT) is synthesized. This multifunctional small‐molecule PS is developed from a variety of synthesized heptamethine cyanine dyes, which are modified with various N‐alkyl side chains on the lipophilic cationic heptamethine core. It is demonstrated to preferentially accumulate in cancer cells by organic‐anion transporting polypeptide mediated active transport and retain in mitochondria by its lipophilic cationic property. As mitochondria are susceptible to hyperthermia and excessive reactive oxygen species, this new PS integrating PTT and PDT treatment exhibits highly efficient phototherapy in multiple cancer cells and animal xenograft models. Furthermore, this targeted PS with NIR imaging property also enables tumors and their margins clearly visualized, providing the potential for precisely imaging‐guided phototherapy and treatment monitoring. This is the first report that a small‐molecule PS integrates both cancer PTT and PDT treatment by targeting mitochondria, significantly increasing the photosensitization. This work may also present a practicable strategy to develop small‐molecule‐based cancer theranostic agents for simultaneous cancer targeting, imaging, and therapy.  相似文献   

10.
The clinical application of photothermal therapy (PTT) is limited by the accuracy of thermal damage and the risk of tumor metastasis and relapse induced by hyperthermia-related inflammation. Intracellular bottom-up synthesis (iBuS) of CuS nanoparticles from small-molecule precursors inside tumor cells triggered by tumor specific stimuli is a promising strategy to enhance the precision of PTT treatment and reduce the risk of nondegradable metal nanoparticles. Herein, monolocking nanoparticles (MLNPs) with Cu-meloxicam complexes encapsulated by human serum albumin (HSA) are reported, which efficiently form CuS nanodots via the elevated concentration of endogenous H2S inside tumor cells and meanwhile release meloxicam for anti-inflammatory effects. The intracellular bottom-up fabrication of CuS nanodots is directly visualized by TEM. An enhanced PTT effect is observed with 4T1 cells caused by additional meloxicam-induced inactivation of the COX-2 enzyme. After systemic administration, MLNPs completely ablate tumors under laser exposure, simultaneously inhibiting the inflammation induced by photothermal damage, and can be cleared via the kidney into urine. This strategy provides a new route for activated multimodal therapy, which could be applicable to precisely combat cancer.  相似文献   

11.
Photothermal therapy (PTT) is a promising cancer treatment, but it has so far proven successful only with relatively small subcutaneous tumors in animal models. Treating larger tumors (≈200 mm3) is challenging because most PTT materials do not efficiently reach the hypoxic, avascular center of tumors, and the immunosuppressive tumor microenvironment prevents T cells from fighting against residual tumor cells, thereby allowing recurrence and metastasis. Here, the widely used PTT material polydopamine is coated on the surface of the facultative anaerobe Salmonella VNP20009, which can penetrate deep into larger tumors. The coated bacteria are intravenously injected followed by near‐infrared laser irradiation at the tumor site, combined with a local inoculation of phospholipid‐based phase separation gel containing the anti‐programmed cell death‐1 peptide AUNP‐12. The gel releases AUNP‐12 sustainably during 42 days, maintaining the tumor microenvironment as immunopermissive. Using a mouse model of melanoma, this triple combination of biotherapy, PTT, and sustainable programmed cell death‐1 (PD‐1) blockade shows high efficiency on eliciting robust antitumor immune responses and eliminating relatively large tumors in 50% of animals within 80 days. Thus, the results shed new light on a previously unrecognized immunological facet of bacteria‐mediated therapy, and this innovative triple therapy may be a powerful cancer immunotherapy tool.  相似文献   

12.
Nanoparticles possess the potential to revolutionize cancer diagnosis and therapy. The ideal theranostic nanoplatform should own long system circulation and active cancer targeting. Additionally, it should be nontoxic and invisible to the immune system. Here, the authors fabricate an all‐in‐one nanoplatform possessed with these properties for personalized cancer theranostics. Platelet‐derived vesicles (PLT‐vesicles) along with their membrane proteins are collected from mice blood and then coated onto Fe3O4 magnetic nanoparticles (MNs). The resulting core–shell PLT‐MNs, which inherit the long circulation and cancer targeting capabilities from the PLT membrane shell and the magnetic and optical absorption properties from the MN core, are finally injected back into the donor mice for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Meanwhile, it is found that the PTT treatment impels PLT‐MNs targeting to the PTT sites (i.e., tumor sites), and exactly, in turn, the enhanced targeting of PLT‐MNs to tumor sites can improve the PTT effects. In addition, since the PLT membrane coating is obtained from the mice and finally injected into the same mice, PLT‐MNs exhibit stellar immune compatibility. The work presented here provides a new angle on the design of biomimetic nanoparticles for personalized diagnosis and therapy of various diseases.  相似文献   

13.
The poly(maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol)) (C18PMH‐PEG) modified single‐walled carbon nanohorns (SWNHs) are designed with high stability and biocompatibility. The as‐prepared SWNHs/C18PMH‐PEG not only can serve as an excellent photothermal agent but also can be used as a promising photoacoustic imaging (PAI) agent both in vitro and in vivo due to its strong absorption in the near infrared (NIR) region. The PAI result reveals that the SWNHs/C18PMH‐PEG possesses ultra long blood circulation time and can significantly be accumulated at the tumor site through the enhanced penetration and retention (EPR) effect. The maximum accumulation of SWNHs/C18PMH‐PEG at tumor site could be achieved at the time point of 24 h after intravenous injection, which is considered to be the optimal time for the 808 nm laser treatment. The subsequent photothermal ablation of tumors can be achieved without triggering any side effects. Therefore, a PAI guided PTT platform based on SWNHs is proposed and highlights the potential theranostic application for biomedical uses.  相似文献   

14.
Multimodal bio‐imaging has attracted great attention for early and accurate diagnosis of tumors, which, however, suffers from the intractable issues such as complicated multi‐step syntheses for composite nanostructures and interferences among different modalities like fluorescence quenching by MRI contrast agents (e.g., magnetic iron oxide NPs). Herein, the first example of T2‐weighted MR imaging of Ho3+‐doped upconversion nanoparticles (UCNPs) is presented, which, very attractively, could also be simultaneously used for upconversion luminesence (UCL) and CT imaging, thus enabling high performance multi‐modal MRI/UCL/CT imagings in single UCNPs. The new finding of T2‐MRI contrast enhancement by integrated sensitizer (Yb3+) and activator (Ho3+) in UCNPs favors accurate MR diagnosis of brain tumor and provides a new strategy for acquiring T2‐MRI/optical imaging without fluorescence quenching. Unlike other multi‐phased composite nanostructures for multimodality imaging, this Ho3+‐doped UCNPs are featured with simplicity of synthesis and highly efficient multimodal MRI/UCL/CT imaging without fluorescence quenching, thus simplify nanostructure and probe preparation and enable win–win multimodality imaging.  相似文献   

15.
Poly(lactide‐co‐glycolic acid) (PLGA) particles are biocompatible and bio­degradable, and can be used as a carrier for various chemotherapeutic drugs, imaging agents and targeting moieties. Micrometer‐sized PLGA particles were synthesized with gold nanoparticles and DiI dye within the PLGA shell, and perfluorohexane liquid (PFH) in the core. Upon laser irradiation, the PLGA shell absorbs the laser energy, activating the liquid core (liquid conversion to gas). The rapidly expanding gas is expelled from the particle, resulting in a microbubble; this violent process can cause damage to cells and tissue. Studies using cell cultures show that PLGA particles phagocytosed by single cells are consistently vaporized by laser energies of 90 mJ cm?2, resulting in cell destruction. Rabbits with metastasized squamous carcinoma in the lymph nodes are then used to evaluate the anti‐cancer effects of these particles in the lymph nodes. After percutaneous injection of the particles and upon laser irradiation, through the process of optical droplet vaporization, ultrasound imaging shows a significant increase in contrast in comparison to the control. Histology and electron microscopy confirm damage with disrupted cells throughout the lymph nodes, which slows the tumor growth rate. This study shows that PLGA particles containing PFC liquids can be used as theranostic agents in vivo.  相似文献   

16.
Nanomaterials with renal clearance from the body within a reasonable timescale have shown great promises in the area of nanomedicine recently. However, the integration of theranostic and renal clearance properties into a single ultrasmall nanostructure remains a great challenge. Herein, meso‐tetra(4‐carboxyphenyl)porphyrin (TCPP) structure is utilized as a model, for the first time using noninvasive dynamic positron emission tomography (PET) imaging to investigate the balance of the renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)‐modified porphyrin nanoparticles (TCPP‐PEG) with various molecular weights. This study finds that TCPP‐PEG nanoparticles with larger molecular weight show higher tumor uptake due to the enhanced permeability and retention effect, while the lower ones tend to be better for renal clearance. Based on dynamic PET and fluorescence dual‐modal imaging modalities, the TCPP‐PEG10K nanoparticles seem to be an excellent choice for the balance of renal clearance and tumor retention. In vitro and in vivo photodynamic therapy confirms an excellent therapeutic efficacy. Therefore, this work presents a simplified approach to fabricate and select biocompatible multifunctional TCPP‐PEG‐based theranostic agents with renal clearance behavior, which highlights the clinical application potential of TCPP‐PEG nanoparticles as theranostic probes for imaging‐guided cancer therapy.  相似文献   

17.
Effective nanoprobes and contrast agents are urgently sought for early‐stage cancer diagnosis. Upconversion nanoparticles (UCNPs) are considerable alternatives for bioimaging, cancer diagnosis, and therapy. Yb3+/Tm3+ co‐doping brings both emission and excitation wavelengths into the near‐infrared (NIR) region, which is known as “optical transmission window” and ideally suitable for bioimaging. Here, NIR emission intensity is remarkably enhanced by 113 times with the increase of Yb3+ concentration from 20% to 98% in polyethylene glycol (PEG) modified NaYF4:Yb3+/Tm3+ UCNPs. PEG‐UCNPs‐5 (98% Yb3+) can act as excellent nanoprobes and contrast agents for trimodal upconversion (UC) optical/CT/T2‐weighted magnetic resonance imaging (MRI). In addition, the enhanced detection of lung in vivo long‐lasting tracking, as well as possible clearance mechanism and excretion routes of PEG‐UCNPs‐5 have been demonstrated. More significantly, a small tumor down to 4 mm is detected in vivo via intravenous injection of these nanoprobes under both UC optical and T2‐weighted MRI modalities. PEG‐UCNPs‐5 can emerge as bioprobes for multi‐modal bioimaging, disease diagnosis, and therapy, especially the early‐stage tumor diagnosis.  相似文献   

18.
Nanoscale coordination polymers (NCPs) self‐assembled from metal ions and organic bridging ligands exhibit many unique features promising for applications in nanomedicine. In this work, manganese dioxide (MnO2) nanoparticles stabilized by bovine serum albumin are encapsulated by NCP‐shells constructed based on high‐Z element hafnium (Hf) ions and c,c,t‐(diamminedichlorodisuccinato)Pt(IV) (DSP), a cisplatin prodrug. After further modification with polyethylene glycol (PEG), the formed BM@NCP(DSP)‐PEG can simultaneously serve as a radio‐sensitizer owing to the strong X‐ray attenuation capability of Hf to enhance radiotherapy, as well as a chemotherapeutic agent resulting from the reduction‐induced release of cisplatin. Meanwhile, the in situ generated oxygen resulting from MnO2‐triggered decomposition of tumor endogenous H2O2 will be greatly helpful for overcoming hypoxia‐associated radio‐resistance. Upon intravenous injection, BM@NCP(DSP)‐PEG shows efficient tumor homing as well as rapid renal excretion, as illustrated by magnetic resonance imaging and confirmed by biodistribution measurement. Notably, an excellent in vivo tumor growth inhibition effect is observed with BM@NCP(DSP)‐PEG nanoparticles after the combined chemoradiotherapy treatment. Therefore, the NCP‐based composite nanoparticles with inherent biodegradability and no appreciable in vivo toxicity may be a unique type of multifunctional nanoplatform responsive to different parameters in the tumor microenvironment, promising for cancer theranostics with great efficacy.  相似文献   

19.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

20.
Multifunctional theranostic agents have become rather attractive to realize image‐guided combination cancer therapy. Herein, a novel method is developed to synthesize Bi2Se3 nanosheets decorated with mono‐dispersed FeSe2 nanoparticles (FeSe2/Bi2Se3) for tetra‐modal image‐guided combined photothermal and radiation tumor therapy. Interestingly, upon addition of Bi(NO3)3, pre‐made FeSe2 nanoparticles via cation exchange would be gradually converted into Bi2Se3 nanosheets, on which remaining FeSe2 nanoparticles are decorated. The yielded FeSe2/Bi2Se3 composite‐nanostructures are then modified with polyethylene glycol (PEG). Taking advantages of the high r 2 relaxivity of FeSe2, the X‐ray attenuation ability of Bi2Se3, the strong near‐infrared optical absorbance of the whole nanostructure, as well as the chelate‐free radiolabeling of 64Cu on FeSe2/Bi2Se3‐PEG, in vivo magnetic resonance/computer tomography/photoacoustic/position emission tomography multimodal imaging is carried out, revealing efficient tumor homing of FeSe2/Bi2Se3‐PEG after intravenous injection. Utilizing the intrinsic physical properties of FeSe2/Bi2Se3‐PEG, in vivo photothermal and radiation therapy to achieve synergistic tumor destruction is then realized, without causing obvious toxicity to the treated animals. This work presents a unique method to synthesize composite‐nanostructures with highly integrated functionalities, promising not only for nano‐biomedicine but also potentially for other different nanotechnology fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号