首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

2.
We present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n‐type window of low band gap solar cells. We demonstrate that low‐voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non‐reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free‐carrier concentration and higher free‐carrier mobility than Al‐doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high‐temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4‐based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378mV, and a power conversion efficiency of 8.4 %. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The band‐gap engineering of doped ZnO nanowires is of the utmost importance for tunable light‐emitting‐diode (LED) applications. A combined experimental and density‐functional theory (DFT) study of ZnO doping by copper (Zn2+ substitution by Cu2+) is presented. ZnO:Cu nanowires are epitaxially grown on magnesium‐doped p‐GaN by electrochemical deposition. The heterojunction is integrated into a LED structure. Efficient charge injection and radiative recombination in the Cu‐doped ZnO nanowires are demonstrated. In the devices, the nanowires act as the light emitters. At room temperature, Cu‐doped ZnO LEDs exhibit low‐threshold emission voltage and electroluminescence emission shifted from the ultraviolet to violet–blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the copper content in the ZnO nanoemitters. The shift is explained by DFT calculations with the appearance of copper d states in the ZnO band‐gap and subsequent gap reduction upon doping. The presented data demonstrate the possibility to tune the band‐gap of ZnO nanowire emitters by copper doping for nano‐LEDs.  相似文献   

4.
脉冲激光沉积法制备ZnO基薄膜研究进展   总被引:9,自引:3,他引:6  
作为一种新型的Ⅱ-Ⅵ半导体材料,ZnO具有优良的光学和电学性能,在紫外光发射器件、自旋功能器件、气体探测器、表面声波器件等领域有着广阔的应用前景.首先介绍了ZnO材料和脉冲激光溅射法的一些相关内容,然后从材料制备角度着重阐述了目前利用脉冲激光沉积法(PLD)制备ZnO基薄膜的若干重要研究方向,例如p型掺杂、p-n结的制备、Mg掺杂、Cd掺杂和磁性离子掺杂等.  相似文献   

5.
While indirectly patterned organic–inorganic hybrid perovskite nanostructures have been extensively studied for use in perovskite optoelectronic devices, it is still challenging to directly pattern perovskite thin films because perovskite is very sensitive to polar solvents and high‐temperature environments. Here, a simple and low‐cost approach is proposed to directly pattern perovskite solid‐state films into periodic nanostructures. The approach is basically perovskite recrystallization through phase transformation with the presence of a periodic mold on an as‐prepared solid‐state perovskite film. Interestingly, this study simultaneously achieves not only periodically patterned perovskite nanostructures but also better crystallized perovskites and improved optical properties, as compared to its thin film counterpart. The improved optical properties can be attributed to the light extraction and increased spontaneous emission rate of perovskite gratings. By fabricating light‐emitting diodes using the periodic perovskite nanostructure as the emission layers, approximately twofold higher radiance and lower threshold than the reference planar devices are achieved. This work opens up a new and simple way to fabricate highly crystalline and large‐area perovskite periodic nanostructures for low‐cost production of high‐performance optoelectronic devices.  相似文献   

6.
Moisture‐delicate and water‐unstable organic–inorganic halide perovskites (OI‐HPs) create huge challenges for the synthesis of highly efficient water‐stable light‐emitting materials for optoelectronic devices. Herein, a simple acid solution–assisted method to synthesize quantum confined 2D lead perovskites through Mn doping is reported. The efficient energy transfer between host and dopant ions in orange light‐emitting Mn2+‐doped OI‐HPs leads to the most efficient integrated luminescence with a photoluminescence quantum yield over 45%. The Mn2+ substitution of Pb2+ and passivation with low dielectric constant molecules such as phenethylamine, benzylamine, and butylamine enhance water resistivity, leading to water stability. The dual emission process of this water‐stable 2D Mn‐doped perovskite will help in developing highly efficient 2D water‐stable perovskites for practical applications.  相似文献   

7.
The research on transparent conductive electrodes is in rapid ascent in order to respond to the requests of novel optoelectronic devices. The synergic coupling of silver nanowires (AgNWs) and high‐quality solution‐processable exfoliated graphene (EG) enables an efficient transparent conductor with low‐surface roughness of 4.6 nm, low sheet resistance of 13.7 Ω sq?1 at high transmittance, and superior mechanical and chemical stabilities. The developed AgNWs–EG films are versatile for a wide variety of optoelectronics. As an example, when used as a bottom electrode in organic solar cell and polymer light‐emitting diode, the devices exhibit a power conversion efficiency of 6.6% and an external quantum efficiency of 4.4%, respectively, comparable to their commercial indium tin oxide counterparts.  相似文献   

8.
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices.  相似文献   

9.
Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma‐enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ~7 nm/s are achieved at low temperature (200 °C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in the visible range (90%). By a short (~minute) post‐deposition exposure to near‐ultraviolet light, a very low resistivity value of 1.6·10−3 Ω cm for undoped ZnO is achieved, which is independent on the film thickness in the range from 180 to 1200 nm. The photo‐enhanced conductivity is stable in time at room temperature when ZnO is coated by an Al2O3 barrier film, deposited by the industrially scalable spatial atomic layer deposition technique. ZnO and Al2O3 films have been used as front electrode and barrier, respectively, in Cu(In,Ga)Se2 (CIGS) solar cells. An average efficiency of 15.4 ± 0.2% (15 cells) is obtained that is similar to the efficiency of CIGS reference cells in which sputtered ZnO:Al is used as electrode. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Flexible large‐area organic light‐emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin‐doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are highly desired. Here an indium‐free anode is developed by a combinatorial study of zinc oxide (ZnO) and tin oxide (SnO2), both composed of earth‐abundant elements. The optimized Zn–Sn–O (ZTO) films have electron mobilities of up to 21 cm2 V?1 s?1, a conductivity of 245 S cm?1, and <5% absorptance in the visible range of the spectrum. The high electron mobilities and low surface roughness (<0.2 nm) are achieved by producing dense and void‐free amorphous layers as confirmed by transmission electron microscopy. These ZTO layers are evaluated for OLEDs in two anode configurations: i) 10 cm2 devices with ZTO/Ag/ZTO and ii) 41 cm2 devices with ZTO plus a metal grid. The ZTO layers are compatible with OLED processing steps and large‐area white OLEDs fabricated with the ZTO/grid anode show better performance than those with ITO/grid anodes. These results confirm that ZTO has the potential as an In‐free and Earth‐abundant alternative to ITO for large‐area flexible OLEDs.  相似文献   

11.
Substrate configuration allows for the deposition of thin film silicon (Si) solar cells on non‐transparent substrates such as plastic sheets or metallic foils. In this work, we develop processes compatible with low Tg plastics. The amorphous Si (a‐Si:H) and microcrystalline Si (µc‐Si:H) films are deposited by plasma enhanced chemical vapour deposition, at very high excitation frequencies (VHF‐PECVD). We investigate the optical behaviour of single and triple junction devices prepared with different back and front contacts. The back contact consists either of a 2D periodic grid with moderate slope, or of low pressure CVD (LP‐CVD) ZnO with random pyramids of various sizes. The front contacts are either a 70 nm thick, nominally flat ITO or a rough 2 µm thick LP‐CVD ZnO. We observe that, for a‐Si:H, the cell performance depends critically on the combination of thin flat or thick rough front TCOs and the back contact. Indeed, for a‐Si:H, a thick LP‐CVD ZnO front contact provides more light trapping on the 2D periodic substrate. Then, we investigate the influence of the thick and thin TCOs in conjunction with thick absorbers (µc‐Si:H). Because of the different nature of the optical systems (thick against thin absorber layer), the antireflection effect of ITO becomes more effective and the structure with the flat TCO provides as much light trapping as the rough LP‐CVD ZnO. Finally, the conformality of the layers is investigated and guidelines are given to understand the effectiveness of the light trapping in devices deposited on periodic gratings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Metalorganic Chemical Vapour Deposition is a promising method for the growth of thin aluminium doped zinc oxide films (ZnO:Al), a material with potential application as transparent conducting oxide (TCO), e.g. for the use as front electrode in solar cells. For the low-cost deposition, the choice of the precursors is extremely important. Here we present the deposition of quite homogeneous films from the acetylacetonates of zinc and aluminium that are rather cheap, commercially available and easy to handle. A user-made CVD-reactor activating the deposition process by the light of halogen lamps was used for film deposition. Well-ordered films with an aluminium content between 0 and 8% were grown on borosilicate glass and Si(100). On both types of substrate, the films are crystalline and show a preferred orientation along the (002)-direction. The 0.3 to 0.5 μm thick films are highly transparent in the visible region. The best films show a low electric resistivity between 2.4 and 8  cm.  相似文献   

13.
The performance of a flexible transparent conductive electrode with extremely smooth topography capable of withstanding thermal processing at 300 °C for at least 6 h with little change in sheet resistance and optical clarity is reported. In depth investigation is performed on atomic layer deposition (ALD) deposited ZnO on Ag nanowires (NWs) with regard to thermal and atmospheric corrosion stability. The ZnO coated nanowire networks are embedded within the surface of a polyimide matrix, and the <2 nm roughness freestanding ­electrode is used to fabricate a white polymer light emitting diode (PLED). PLEDs obtained using the ZnO‐AgNW‐polyimide substrate exhibit comparable performance to indium tin oxide (ITO)/glass based devices, verifying its efficacy for use in optoelectronic devices requiring high processing temperatures.  相似文献   

14.
Zinc oxide is a very promising material for short‐wavelength light‐emitting devices due to its large band gap and high exciton binding energy. Although great progress has been made in recent years, p‐type doping and control over native defects introduced during or after material growth are still significant problems that hinder the development of efficient ZnO based optoelectronic devices. Here we demonstrate a versatile method for the growth or p‐type or n‐type ZnO nanorods from the same growth solution at temperature as low as 90 °C, where the conductivity type is controlled by the preparation of the seed layer for nanorod growth. The differences in the conductivity type can be attributed to dependency of native defect concentrations and hydrogen incorporation on the seed layer preparation method. Room temperature electroluminescence has been demonstrated from homojunction and heterojunction light emitting diodes containing p‐ZnO nanorods.  相似文献   

15.
Controlling the transport and minimizing charge carrier trapping at interfaces is crucial for the performance of various optoelectronic devices. Here, how electronic properties of stable, abundant, and easy‐to‐synthesized carbon dots (CDs) are controlled via the surface chemistry through a chosen ratio of their precursors citric acid and ethylenediamine are demonstrated. This allows to adjust the work function of indium tin oxide (ITO) films over the broad range of 1.57 eV, through deposition of thin CD layers. CD modifiers with abundant amine groups reduce the ITO work function from 4.64 to 3.42 eV, while those with abundant carboxyl groups increase it to 4.99 eV. Using CDs to modify interfaces between metal oxide (SnO2 and ZnO) films and active layers of solar cells and light‐emitting diodes (LEDs) allows to significantly improve their performance. Power conversion efficiency of CH3NH3PbI3 perovskite solar cells increases from 17.3% to 19.5%; the external quantum efficiency of CsPbI3 perovskite quantum dot LEDs increases from 4.8% to 10.3%; and that of CdSe/ZnS quantum dot LEDs increases from 8.1% to 21.9%. As CD films are easily fabricated in air by solution processing, the approach paves the way to a simplified manufacturing of large‐area and low‐cost optoelectronic devices.  相似文献   

16.
An atmospheric process based on compressed CO2 is used to create stable clusters of small organic molecules. These clusters, 1–10 nm in size, are used as building blocks to assemble thin films on various substrates. Cluster assembly of these films is verified by using low‐angle X‐ray diffraction. The surface quality of these cluster‐assembled films is similar to that of films usually prepared via the vacuum process. Several functional organic light‐emitting diode devices have been prepared, in which only the doped emissive layer has been deposited by our process. The radiometric features and efficiencies of these devices match those of vacuum‐built devices. Atomic force microscopy of these molecular clusters reveals that they are liquid‐like at standard atmospheric conditions. Coatings of these clusters on cloth and stainless steel have been found to be superhydrophobic in nature.  相似文献   

17.
High performance indium tin oxide (ITO)‐free small molecule organic solar cells and organic light‐emitting diodes (OLEDs) are demonstrated using optimized ZnO electrodes with alternative non‐metallic co‐dopants. The co‐doping of hydrogen and fluorine reduces the metal content of ZnO thin films, resulting in a low absorption coefficient, a high transmittance, and a low refractive index as well as the high conductivity, which are needed for the application in organic solar cells and OLEDs. While the established metal‐doped ZnO films have good electrical and optical properties, their application in organic devices is not as efficient as other alternative electrode approaches. The optimized ZnO electrodes presented here are employed in organic solar cells as well as OLEDs and allow not only the replacement of ITO, but also significantly improve the efficiency compared to lab‐standard ITO. The enhanced performance is attributed to outstanding optical properties and spontaneously nanostructured surfaces of the ZnO films with non‐metallic co‐dopants and their straightforward integration with molecular doping technology, which avoids several common drawbacks of ZnO electrodes. The observations show that optimized ZnO films with non‐metallic co‐dopants are a promising and competitive electrode for low‐cost and high performance organic solar cells and OLEDs.  相似文献   

18.
A novel procedure for effective fabrication of photostable oxygen‐doped single‐walled carbon nanotubes (SWCNTs) in solid‐state matrices has been developed. SWCNTs drop‐cast on various types of substrates are coated with oxide dielectric thin films by electron‐beam evaporation. Single tube photoluminescence spectroscopy studies performed at room and cryogenic temperatures reveal that such thin film‐coated tubes exhibit characteristic spectral features of oxygen‐doped SWCNTs, indicating the oxide thin film coating process leads to oxygen doping of the tubes. It is also found that the doping efficiency can be effectively controlled by the thin film deposition time and by the types of surfactants wrapping the SWCNTs. Moreover, aside from being the doping agent, the oxide thin film also serves as a passivation layer protecting the SWCNTs from the external environment. Comparing the thin film coated SWCNTs with oxygen‐doped tubes prepared via ozonolysis, the former exhibit significantly higher photostability and photoluminescence on‐time. Therefore, this one‐step deposition/oxygen‐doping procedure provides a possible route toward scalable, versatile incorporation of highly photostable oxygen‐doped SWCNTs in novel optical and optoelectronic devices.  相似文献   

19.
A hybrid approach for the realization of In‐free transparent conductive layers based on a composite of a mesh of silver nanowires (NWs) and a conductive metal‐oxide is demonstrated. As metal‐oxide room‐temperature‐processed sol–gel SnOx or Al:ZnO prepared by low‐temperature (100 °C) atomic layer deposition is used, respectively. In this concept, the metal‐oxide is intended to fuse the wires together and also to “glue” them to the substrate. As a result, a low sheet resistance down to 5.2 Ω sq‐1 is achieved with a concomitant average transmission of 87%. The adhesion of the NWs to the substrate is significantly improved and the resulting composites withstand adhesion tests without loss in conductivity. Owing to the low processing temperatures, this concept allows highly robust, highly conductive, and transparent coatings even on top of temperature sensitive objects, for example, polymer foils, organic devices. These Indium‐ and PEDOT:PSS‐free hybrid layers are successfully implemented as transparent top‐electrodes in efficient all‐solution‐processed semitransparent organic solar cells. It is obvious that this approach is not limited to organic solar cells but will generally be applicable in devices which require transparent electrodes.  相似文献   

20.
《Organic Electronics》2007,8(1):51-56
Fourier transform infrared and photoluminescence spectroscopy provide strong evidence that post-deposition hydrogen doping of polycrystalline zinc oxide (ZnO) thin films improves the resistivity by increasing hydrogen-related shallow donors and hydrogen passivation of native defects. Improvement of the electrical stability and UV emission confirm that post-deposition hydrogen doping is a promising method to achieve high quality ZnO thin films for the use as transparent electrodes and/or UV light emitters in thin-film-based optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号