首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

2.
It is of great importance to reinforce electronic and ionic conductivity of Li4Ti5O12 electrodes to achieve fast reaction kinetics and good high‐power capability. Herein, for the first time, a dual strategy of combing N‐doped Li4Ti5O12 (N‐LTO) with highly conductive TiC/C skeleton to realize enhanced ultrafast Li ion storage is reported. Interlinked hydrothermal‐synthesized N‐LTO nanosheets are homogeneously decorated on the chemical vapor deposition (CVD) derived TiC/C nanowires forming binder‐free N‐LTO@TiC/C core–branch arrays. Positive advantages including large surface area, strong mechanical stability, and enhanced electronic/ionic conductivity are obtained in the designed integrated arrays and rooted upon synergistic TiC/C matrix and N doping. The above appealing features can effectively boost kinetic properties throughout the N‐LTO@TiC/C electrodes to realize outstanding high‐rate capability at different working temperatures (143 mAh g?1/10 C at 25 °C and 122 mAh g?1/50 C at 50 °C) and notable cycling stability with a capacity retention of 99.3% after 10 000 cycles at 10 C. Moreover, superior high‐rate cycling life is also demonstrated for the full cells with N‐LTO@TiC/C anode and LiFePO4 cathode. The dual strategy may provoke wide interests in fast energy storage areas and motivate the further performance improvement of power‐type lithium ion batteries (LIBs).  相似文献   

3.
In this work, rattle‐type ball‐in‐ball V2O5 hollow microspheres are controllably synthesized with the assistance of carbon colloidal spheres as hard templates. Carbon spheres@vanadium‐precursor (CS@V) core–shell composite microspheres are first prepared through a one‐step solvothermal method. The composition of solvent for the solvothermal synthesis has great influence on the morphology and structure of the vanadium‐precursor shells. V2O5 hollow microspheres with various shell architectures can be obtained after removing the carbon microspheres by calcination in air. Moreover, the interior hollow shell can be tailored by varying the temperature ramping rate and calcination temperature. The rattle‐type V2O5 hollow microspheres are evaluated as a cathode material for lithium‐ion batteries, which manifest high specific discharge capacity, good cycling stability and rate capability.  相似文献   

4.
Flexible energy‐storage devices have attracted growing attention with the fast development of bendable electronic systems. Thus, the search for reliable electrodes with both high mechanical flexibility and excellent electron and lithium‐ion conductivity has become an urgent task. Carbon‐coated nanostructures of Li4Ti5O12 (LTO) have important applications in high‐performance lithium ion batteries (LIBs). However, these materials still need to be mixed with a binder and carbon black and pressed onto metal substrates or, alternatively, by be deposited onto a conductive substrate before they are assembled into batteries, which makes the batteries less flexible and have a low energy density. Herein, a simple and scalable process to fabricate LTO nanosheets with a N‐doped carbon coating is reported. This can be assembled into a film which can be used as a binder‐free and flexible electrode for LIBs that does not require any current collectors. Such a flexible electrode has a long life. More significantly, it exhibits an excellent rate capability due to the thin carbon coating and porous nanosheet structures, which produces a highly conductive pathway for electrons and fast transport channels for lithium ions.  相似文献   

5.
Co3O4 anode materials exhibit poor conductivity and a large volume change, rendering controlling of their nanostructure essential to optimize their lithium storage performance. Carbon‐doped Co3O4 hollow nanofibers (C‐doped Co3O4 HNFs), for the first time are synthesized using bifunctional polymeric nanofibers as template and carbon source. Compared with undoped Co3O4 HNFs and solid Co3O4 NFs, C‐doped Co3O4 HNFs feature a remarkably high specific capacity, excellent cycling stability, and superior rate capacity as anode materials for lithium‐ion batteries. The superior performance of C‐doped Co3O4 HNFs electrodes can be attributed to their structural features, which confer enhanced electron transportation and Li+ ion diffusion due to C‐doping, and tolerance for volume change due to the 1D hollow structure. Density functional theory calculations provide a good explanation of the observed enhanced conductivity in C‐doped Co3O4 HNFs.  相似文献   

6.
Highly Li‐ion conductive Li4(BH4)3I@SBA‐15 is synthesized by confining the LiI doped LiBH4 into mesoporous silica SBA‐15. Uniform nanoconfinement of P63 mc phase Li4(BH4)3I in SBA‐15 mesopores leads to a significantly enhanced conductivity of 2.5 × 10?4 S cm?1 with a Li‐ion transference number of 0.97 at 35 °C. The super Li‐ion mobility in the interface layer with a thickness of 1.2 nm between Li4(BH4)3I and SBA‐15 is believed to be responsible for the fast Li‐ion conduction in Li4(BH4)3I@SBA‐15. Additionally, Li4(BH4)3I@SBA‐15 also exhibits a wide apparent electrochemical stability window (0 to 5 V vs Li/Li+) and a superior Li dendrite suppression capability (critical current density 2.6 mA cm?2 at 55 °C) due to the formation of stable interphases. More importantly, Li4(BH4)3I@SBA‐15‐based Li batteries using either high‐capacity sulfur cathode or high‐voltage oxide cathode show excellent electrochemical performances, making Li4(BH4)3I@SBA‐15 a very attractive electrolyte for next‐generation all‐solid‐state Li batteries.  相似文献   

7.
An evolutionary modification approach, boron doped carbon coating, is initially used to improve the electrochemical properties of electrode materials of lithium‐ion batteries, such as Li3V2(PO4)3, and demonstrates apparent and significant modification effects. Based on the precise analysis of X‐ray photoemission spectroscopy results, Raman spectra, and electrochemical impedance spectroscopy results for various B‐doped carbon coated Li3V2(PO4)3 samples, it is found that, among various B‐doping types (B4C, BC3, BC2O and BCO2), the graphite‐like BC3 dopant species plays a huge role on improving the electronic conductivity and electrochemical activity of the carbon coated layer on Li3V2(PO4)3 surface. As a result, when compared with the bare carbon coated Li3V2(PO4)3, the electrochemical performances of the B‐doped carbon coated Li3V2(PO4)3 electrode with a moderate doping amount are greatly improved. For example, when cycled under 1 C and 20 C in the potential range of 3.0–4.3 V, this sample shows an initial capacity of 122.5 and 118.4 mAh g?1, respectively; after 200 cycles, nearly 100% of the initial capacity is retained. Moreover, the modification effects of B‐doped carbon coating approach are further validated on Li4Ti5O12 anode material.  相似文献   

8.
By optimizing the main materials in lithium‐air batteries, namely sulfolane as electrolyte solvent, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as electrolyte salt, carbon paper as current collector, and Li2O2–C hybrids as positive electrode materials, a performance of 800 cycles with a specific capacity of 1000 mAh g?1 (based on the total mass of positive electrode materials) and an average energy efficiency of 74.72% has been achieved in this work and for the first time reported in the field of lithium‐air battery. Sulfolane‐based electrolyte and carbon paper current collector play the most critical role in building such a lithium‐air battery of high cycle life. The findings described here are expected to benefit the pursuit of green, sustainable, and high‐performance lithium‐air batteries.  相似文献   

9.
Although transition metal oxide electrodes have large lithium storage capacity, they often suffer from low rate capability, poor cycling stability, and unclear additional capacity. In this paper, CoO nanowire clusters (NWCs) composed of ultra‐small nanoparticles (≈10 nm) directly grown on copper current collector are fabricated and evaluated as an anode of binder‐free lithium‐ion batteries, which exhibits an ultra‐high capacity and good rate capability. At a rate of 1 C (716 mA g?1), a reversible capacity as high as 1516.2 mA h g?1 is obtained, and even when the current density is increased to 5 C, a capacity of 1330.5 mA h g?1 could still be maintained. Importantly, the origins of the additional capacity are investigated in detail, with the results suggesting that pseudocapacitive charge and the higher‐oxidation‐state products are jointly responsible for the large additional capacity. In addition, nanoreactors for the CoO nanowires are fabricated by coating the CoO nanowires with amorphous silica shells. This hierarchical core–shell CoO@SiO2 NWC electrode achieves an improved cycling stability without degrading the high capacity and good rate capability compared to the uncoated CoO NWCs electrode.  相似文献   

10.
Li4Ti5O12 typically shows a flat charge/discharge curve, which usually leads to difficulty in the voltage‐based state of charge (SOC) estimation. In this study, a facile quench‐assisted solid‐state method is used to prepare a highly crystalline binary Li4Ti5O12‐Li2Ti3O7 nanocomposite. While Li4Ti5O12 exhibits a sudden voltage rise/drop near the end of its charge/discharge curve, this binary nanocomposite has a tunable sloped voltage profile. The nanocomposite exhibits a unique lamellar morphology consisting of interconnected nanograins of ≈20 nm size with a hierarchical nanoporous structure, contributing to an enhanced rate capability with a capacity of 128 mA h g?1 at a high C‐rate of 10 C, and excellent cycling stability.  相似文献   

11.
Due to high capacity, moderate redox voltage, and relatively low polarization, metal phosphides (MPs) attract much attention as viable anode materials for lithium‐ion storage. However, severe capacity decay induced by the poor reversibility of discharge product (Li3P) in these anodes suppresses their practical applications. Herein, it is first revealed that N‐doped carbon can effectively catalyze the oxidation of Li3P by density functional theory calculations and activation experiments. By anchoring Ni2P nanoparticles on N‐doped carbon sheets (Ni2P@N‐C) via a facile method, an MP‐based anode rendered with a catalytic attribute is successfully fabricated for improving the reversibility of Li3P during lithium‐ion storage. Benefiting from this design, not only can high capacity and rate performance be reached, but also an extraordinary cyclability and capacity retention be realized, which is the best among all other phosphides reported so far. By employing such a Ni2P@N‐C composite and a commercialized active carbon as the anode and cathode, respectively, hybrid lithium‐ion capacitors can be fabricated with an ultrahigh energy density of 80 Wh kg?1 at a power density of 12.5 kW kg?1. This strategy of designing electrodes may be generalized to other energy storage systems whose cycling performance needs to be improved.  相似文献   

12.
As an anode material for lithium‐ion batteries, titanium dioxide (TiO2) shows good gravimetric performance (336 mAh g?1 for LiTiO2) and excellent cyclability. To address the poor rate behavior, slow lithium‐ion (Li+) diffusion, and high irreversible capacity decay, TiO2 nanomaterials with tuned phase compositions and morphologies are being investigated. Here, a promising material is prepared that comprises a mesoporous “yolk–shell” spherical morphology in which the core is anatase TiO2 and the shell is TiO2(B). The preparation employs a NaCl‐assisted solvothermal process and the electrochemical results indicate that the mesoporous yolk–shell microspheres have high specific reversible capacity at moderate current (330.0 mAh g?1 at C/5), excellent rate performance (181.8 mAh g?1 at 40C), and impressive cyclability (98% capacity retention after 500 cycles). The superior properties are attributed to the TiO2(B) nanosheet shell, which provides additional active area to stabilize the pseudocapacity. In addition, the open mesoporous morphology improves diffusion of electrolyte throughout the electrode, thereby contributing directly to greatly improved rate capacity.  相似文献   

13.
Metal sulfides are an important class of functional materials possessing exceptional electrochemical performance and thus hold great promise for rechargeable secondary batteries. In this work, we deposited gallium sulfide (GaSx, x = 1.2) thin films by atomic layer deposition (ALD) onto single‐walled carbon nanotube (SWCNT) powders. The ALD GaSx was performed at 150 °C, and produced uniform and conformal amorphous films. The resulting core‐shell, nanostructured SWCNT‐GaSx composite exhibited excellent electrochemical performance as an anode material for lithium‐ion batteries (LIBs), yielding a stable capacity of ≈575 mA g–1 at a current density of 120 mA g–1 in the voltage window of 0.01–2 V, and an exceptional columbic efficiency of >99.7%. The GaSx component of the composite produced a specific capacity of 766 mA g–1, a value two times that of conventional graphite anodes. We attribute the excellent electrochemical performance of the composite to four synergistic effects: 1) the uniform and conformal ALD GaSx coating offers short electronic and Li‐ion pathways during cycling; 2) the amorphous structure of the ALD GaSx accommodates stress during lithiation‐delithiation processes; 3) the mechanically robust SWCNT framework also accommodates stress from cycling; 4) the SWCNT matrix provides a continuous, high conductivity network.  相似文献   

14.
Constructing artificial solid‐electrolyte interphase (SEI) on the surface of Li metal is an effective approach to improve ionic conductivity of surface SEI and buffer Li dendrite growth of Li metal anode. However, constructing of homogenous ideal artificial SEI is still a great challenge. Here, a mixed lithium‐ion conductive Li2S/Li2Se (denoted as LSSe) protection layer, fabricated by a facile and inexpensive gas–solid reaction, is employed to construct stable surface SEI with high ionic conductivity. The Li2S/Li2Se‐protected Li metal (denoted as LSSe@Li) exhibits a stable dendrite‐free cycling behavior over 900 h with a high lithium stripping/plating capacity of 3 mAh cm?2 at 1.5 mA cm?2 in the symmetrical cell. Compared to bare Li anode, full batteries paired with LiFePO4, sulfur/carbon, and LiNi0.6Co0.2Mn0.2O2 cathodes all present better battery cycling and rate performance when LSSe@Li anode is used. Moreover, Li2Se exhibits a lower lithium‐ion migration energy barrier in comparison with Li2S which is proved by density functional theory calculation.  相似文献   

15.
Li2MnSiO4/C nanocomposite with hierarchical macroporosity is prepared with poly(methyl methacrylate) (PMMA) colloidal crystals as a sacrificial hard‐template and water‐soluble phenol‐formaldehyde (PF) resin as the carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirm that the periodic macropores are ≈400 nm in diameter with 20–40 nm walls comprising Li2MnSiO4/C nanocrystals that produce additional large mesopores (< 30 nm) between the nanocrystals. The nanostructured Li2MnSiO4/C cathode exhibits a high reversible discharge capacity of 200 mAh g?1 at C/10 (16 mA g?1) rate at 1.5–4.8 V at 45 °C. Although the discharge capacity can be further increased on operating at 55 °C, the sample exhibits a relatively fast capacity fade at 55 °C, which can be partially solved by simply narrowing the voltage window to avoid side reactions of the electrolyte. The good performance of the Li2MnSiO4/C cathodes is attributed to the unique macro‐/mesostructure of the silicate coupled with uniform carbon coating.  相似文献   

16.
Fe3O4 nanocrystals confined in mesocellular carbon foam (MSU‐F‐C) are synthesized by a “ host–guest ” approach and tested as an anode material for lithium‐ion batteries (LIBs). Briefly, an iron oxide precursor, Fe(NO3)3·9H2O, is impregnated in MSU‐F‐C having uniform cellular pores ~30 nm in dia­meter, followed by heat‐treatment at 400 °C for 4 h under Ar. Magnetite Fe3O4 nanocrystals with sizes between 13–27 nm are then successfully fabricated inside the pores of the MSU‐F‐C, as confirmed by transmission electron microscopy (TEM), dark‐field scanning transmission electron microscopy (STEM), energy dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), and nitrogen sorption isotherms. The presence of the carbon most likely allows for reduction of some of the Fe3+ ions to Fe2+ ions via a carbothermoreduction process. A Fe3O4/MSU‐F‐C nanocomposite with 45 wt% Fe3O4 exhibited a first charge capacity of 1007 mA h g?1 (Li+ extraction) at 0.1 A g?1 (~0.1 C rate) with 111% capacity retention at the 150th cycle, and retained 37% capacity at 7 A g?1 (~7 C rate). Because the three dimensionally interconnected open pores are larger than the average nanosized Fe3O4 particles, the large volume expansion of Fe3O4 upon Li‐insertion is easily accommodated inside the pores, resulting in excellent electrochemical performance as a LIB anode. Furthermore, when an ultrathin Al2O3 layer (<4 Å) was deposited on the composite anode using atomic layer deposition (ALD), the durability, rate capability and undesirable side reactions are significantly improved.  相似文献   

17.
An improvement of lithium‐ion batteries with regard to their reversible capacity, cycling stability, rate performance, and safety under repetitive charge and discharge still requires considerable research activity. However, graphite has remained the unexcelled material for the anode so far. Here, it is shown that two novel quaternary lithium‐chalcogenidometalate phases, Li4MnGe2S7 ( 1 ) and Li4MnSn2Se7 ( 2 ), represent very promising new anode materials for lithium‐ion cells in that they achieve specific lithium storage capacities higher than that of the commercially used graphite, and display an excellent stability during cycling. These properties are based on the structural peculiarities of the phases, which adopt Wurtzite‐related topologies and provide high structural flexibility of the metal sulfide or selenide bonds as advantageous pre‐requisitions for a large ion accessible volume.  相似文献   

18.
Natural polymer nanofibers are attractive sustainable raw materials to fabricate separators for high‐performance lithium ion batteries (LIBs). Unfortunately, complicated pore‐forming processes, low ionic conductivity, and relatively low mechanical strength of previously reported natural polymer nanofiber‐based separators severely limit their performances and applications. Here, a chemical modification strategy to endow high performance to natural polymer nanofiber‐based separators is demonstrated by grafting cyanoethyl groups on the surface of chitin nanofibers. The fabricated cyanoethyl‐chitin nanofiber (CCN) separators not only exhibit much higher ionic conductivity but also retain excellent mechanical strength in comparison to unmodified chitin nanofiber separators. Through density function theory calculations, the mechanism of high Li+ ion transport in the CCN separator is unraveled as weakening of the binding of Li+ ions over that of PF6? ions with chitin, via the cyanoethyl modification. The LiFePO4/Li4Ti5O12 full cells using CCN separators show much better rate capability and enhanced capacity retention compared to the cell using commercial polypropylene (PP) separators. Beyond this, the CCN separator can work very well even at an elevated temperature of 120 °C in the LiFePO4/Li cell. The proposed strategy chemical modification of natural polymer nanofibers will open a new avenue to fabricate sustainable separators for LIBs with superior performance.  相似文献   

19.
Using high‐capacity and metallic Li‐free lithium sulfide (Li2S) cathodes offers an alternative solution to address serious safety risks and performance decay caused by uncontrolled dendrite hazards of Li metal anodes in next‐generation Li metal batteries. Practical applications of such a cathode, however, still suffer from low redox activity, unaffordable cost, and poor processability of infusible and moisture‐sensitive Li2S. Herein, these difficulties are addressed by developing a molecular cage–engaged strategy that enables low‐cost production and interfacial engineering of Li2S cathodes for rechargeable Li2S//Si cells. An efficient chemisorption–electrocatalytic interface is built in extremely nanostructured Li2S cathodes by harnessing the confinement/separation effect of metal–organic molecular cages on ionic clusters of air‐stable, soluble, and low‐cost Li salt and their chemical transformation. It effectively boosts the redox activity toward Li2S activation/dissociation and polysulfide chemisorption–conversion in Li‐S batteries, leading to low activation voltage barrier, stable cycle life of 1000 cycles, ultrafast current rate up to 8 C, and high areal capacities of Li2S cathodes with high mass loading. Encouragingly, this highly active Li2S cathode can be applied for constructing truly workable Li2S//Si cells with a high specific energy of 673 Wh kg?1 and stable performance for 200 cycles at high rates against hollow nanostructured Si anode.  相似文献   

20.
The use of lithium‐ion conductive solid electrolytes offers a promising approach to address the polysulfide shuttle and the lithium‐dendrite problems in lithium‐sulfur (Li‐S) batteries. One critical issue with the development of solid‐electrolyte Li‐S batteries is the electrode–electrolyte interfaces. Herein, a strategic approach is presented by employing a thin layer of a polymer with intrinsic nanoporosity (PIN) on a Li+‐ion conductive solid electrolyte, which significantly enhances the ionic interfaces between the electrodes and the solid electrolyte. Among the various types of Li+‐ion solid electrolytes, NASICON‐type Li1+xAlxTi2‐x(PO4)3 (LATP) offers advantages in terms of Li+‐ion conductivity, stability in ambient environment, and practical viability. However, LATP is susceptible to reaction with both the Li‐metal anode and polysulfides in Li‐S batteries due to the presence of easily reducible Ti4+ ions in it. The coating with a thin layer of PIN presented in this study overcomes the above issues. At the negative‐electrode side, the PIN layer prevents the direct contact of Li‐metal with the LATP solid electrolyte, circumventing the reduction of LATP by Li metal. At the positive electrode side, the PIN layer prevents the migration of polysulfides to the surface of LATP, preventing the reduction of LATP by polysulfides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号