共查询到20条相似文献,搜索用时 15 毫秒
1.
Babatunde O. Okesola Shilei Ni Burak Derkus Carles C. Galeano Abshar Hasan Yuanhao Wu Jopeth Ramis Lee Buttery Jonathan I. Dawson Matteo D'Este Richard O. C. Oreffo David Eglin Hongchen Sun Alvaro Mata 《Advanced functional materials》2020,30(14)
Synthetic osteo‐promoting materials that are able to stimulate and accelerate bone formation without the addition of exogenous cells or growth factors represent a major opportunity for an aging world population. A co‐assembling system that integrates hyaluronic acid tyramine ( HA‐Tyr ), bioactive peptide amphiphiles ( GHK‐Cu2+ ), and Laponite ( Lap ) to engineer hydrogels with physical, mechanical, and biomolecular signals that can be tuned to enhance bone regeneration is reported. The central design element of the multicomponent hydrogels is the integration of self‐assembly and enzyme‐mediated oxidative coupling to optimize structure and mechanical properties in combination with the incorporation of an osteo‐ and angio‐promoting segments to facilitate signaling. Spectroscopic techniques are used to confirm the interplay of orthogonal covalent and supramolecular interactions in multicomponent hydrogel formation. Furthermore, physico‐mechanical characterizations reveal that the multicomponent hydrogels exhibit improved compressive strength, stress relaxation profile, low swelling ratio, and retarded enzymatic degradation compared to the single component hydrogels. Applicability is validated in vitro using human mesenchymal stem cells and human umbilical vein endothelial cells, and in vivo using a rabbit maxillary sinus floor reconstruction model. Animals treated with the HA‐Tyr‐HA‐Tyr‐GHK‐Cu2+ hydrogels exhibit significantly enhanced bone formation relative to controls including the commercially available Bio‐Oss. 相似文献
2.
Amphiphilic and acidic β‐sheet‐forming peptides (AAβPs) having the sequence Pro‐Y‐(Z‐Y)5‐Pro, Y = Glu or Asp and Z = Phe or Leu may assemble into hydrogel structures at near neutral pH values, several units higher than the intrinsic pKa of their acidic amino acid side chains. The bottom‐to‐top design strategy enables the rationally supported association between the peptides' amino acids composition and bulk pH hydrogelation. Hydrogen bonds between the acidic amino acids side chains in the β‐sheet structure are found to contribute substantially to the stabilization of AAβPs hydrogels. The negatively charged peptides are also found to form gels at lower concentration in presence of calcium ions. Bone forming cells may be cultured on two‐dimensional films of AAβPs hydrogels that form at physiological pH values as well as within three dimensional hydrogel matrices. These acidic‐rich peptides hydrogels may become advantageous in applications related to engineering of mineralized tissues providing controllable, multifunctional calcified scaffolds to affect both the biological activity and the inorganic mineralization. 相似文献
3.
Michael P. Cuchiara Daniel J. Gould Melissa K. McHale Mary E. Dickinson Jennifer L. West 《Advanced functional materials》2012,22(21):4511-4518
Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self‐assembling pro‐vasculogenic co‐culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self‐assembly and employs an anastomotic interface for integration of self‐assembled microvascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra‐vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo. 相似文献
4.
Rumeysa Tutar Andisheh Motealleh Ali Khademhosseini Nermin Seda Kehr 《Advanced functional materials》2019,29(46)
An emerging approach to improve the physicobiochemical properties and the multifunctionality of biomaterials is to incorporate functional nanomaterials (NMs) onto 2D surfaces and into 3D hydrogel networks. This approach is starting to generate promising advanced functional materials such as self‐assembled monolayers (SAMs) and nanocomposite (NC) hydrogels of NMs with remarkable properties and tailored functionalities that are beneficial for a variety of biomedical applications, including tissue engineering, drug delivery, and developing biosensors. A wide range of NMs, such as carbon‐, metal‐, and silica‐based NMs, can be integrated into 2D and 3D biomaterial formulations due to their unique characteristics, such as magnetic properties, electrical properties, stimuli responsiveness, hydrophobicity/hydrophilicity, and chemical composition. The highly ordered nano‐ or microscale assemblies of NMs on surfaces alter the original properties of the NMs and add enhanced and/or synergetic and novel features to the final SAMs of the NM constructs. Furthermore, the incorporation of NMs into polymeric hydrogel networks reinforces the (soft) polymer matrix such that the formed NC hydrogels show extraordinary mechanical properties with superior biological properties. 相似文献
5.
Liyang Shi Fanlu Wang Wei Zhu Zongpu Xu Sabine Fuchs Jöns Hilborn Liangjun Zhu Qi Ma Yingjie Wang Xisheng Weng Dmitri A. Ossipov 《Advanced functional materials》2017,27(37)
Despite advances in the development of silk fibroin (SF)‐based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal‐ligand coordination chemistry is developed to assemble SF‐based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF‐based hydrogel exhibits shear‐thinning and autonomous self‐healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate‐coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF‐based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self‐healing and photopolymerizable SF‐based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit‐to‐shape molding. 相似文献
6.
Alfredo M. Gravagnuolo Eden Morales‐Narváez Sara Longobardi Everson T. da Silva Paola Giardina Arben Merkoçi 《Advanced functional materials》2015,25(18):2771-2779
Biological interfacing of graphene has become crucial to improve its biocompatibility, dispersability, and selectivity. However, biofunctionalization of graphene without yielding defects in its sp2‐carbon lattice is a major challenge. Here, a process is set out for biofunctionalized defect‐free graphene synthesis through the liquid phase ultrasonic exfoliation of raw graphitic material assisted by the self‐assembling fungal hydrophobin Vmh2. This protein (extracted from the edible fungus Pleurotus ostreatus) is endowed with peculiar physicochemical properties, exceptional stability, and versatility. The unique properties of Vmh2 and, above all, its superior hydrophobicity, and stability allow to obtain a highly concentrated (≈440–510 μg mL?1) and stable exfoliated material (ζ‐potential, +40/+70 mV). In addition controlled centrifugation enables the selection of biofunctionalized few‐layer defect‐free micrographene flakes, as assessed by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and electrophoretic mobility. This biofunctionalized product represents a high value added material for the emerging applications of graphene in the biotechnological field such as sensing, nanomedicine, and bioelectronics technologies. 相似文献
7.
Qiang Chen Lin Zhu Hong Chen Hongli Yan Lina Huang Jia Yang Jie Zheng 《Advanced functional materials》2015,25(10):1598-1607
Double network (DN) hydrogels with two strong asymmetric networks being chemically linked have demonstrated their excellent mechanical properties as the toughest hydrogels, but chemically linked DN gels often exhibit negligible fatigue resistance and poor self‐healing property due to the irreversible chain breaks in covalent‐linked networks. Here, a new design strategy is proposed and demonstrated to improve both fatigue resistance and self‐healing property of DN gels by introducing a ductile, nonsoft gel with strong hydrophobic interactions as the second network. Based on this design strategy, a new type of fully physically cross‐linked Agar/hydrophobically associated polyacrylamide (HPAAm) DN gels are synthesized by a simple one‐pot method. Agar/HPAAm DN gels exhibit excellent mechanical strength and high toughness, comparable to the reported DN gels. More importantly, because the ductile and tough second network of HPAAm can bear stress and reconstruct network structure, Agar/HPAAm DN gels also demonstrate rapid self‐recovery, remarkable fatigue resistance, and notable self‐healing property without any external stimuli at room temperature. In contrast to the former DN gels in both network structures and underlying association forces, this new design strategy to prepare highly mechanical DN gels provides a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels, thus broadening current hydrogel research and applications. 相似文献
8.
Xuefeng Yang Guoqiang Liu Liao Peng Jinhua Guo Lei Tao Jinying Yuan Chunyu Chang Yen Wei Lina Zhang 《Advanced functional materials》2017,27(40)
To face the increasing demand of self‐healing hydrogels with biocompatibility and high performances, a new class of cellulose‐based self‐healing hydrogels are constructed through dynamic covalent acylhydrazone linkages. The carboxyethyl cellulose‐graft‐dithiodipropionate dihydrazide and dibenzaldehyde‐terminated poly(ethylene glycol) are synthesized, and then the hydrogels are formed from their mixed solutions under 4‐amino‐DL‐phenylalanine (4a‐Phe) catalysis. The chemical structure, as well as microscopic morphologies, gelation times, mechanical and self‐healing performances of the hydrogels are investigated with 1H NMR, Fourier transform infrared spectroscopy, atomic force microscopy, rheological and compression measurements. Their gelation times can be controlled by varying the total polymer concentration or 4a‐Phe content. The resulted hydrogels exhibit excellent self‐healing ability with a high healing efficiency (≈96%) and good mechanical properties. Moreover, the hydrogels display pH/redox dual responsive sol‐gel transition behaviors, and are applied successfully to the controlled release of doxorubicin. Importantly, benefitting from the excellent biocompatibility and the reversibly cross‐linked networks, the hydrogels can function as suitable 3D culture scaffolds for L929 cells, leading to the encapsulated cells maintaining a high viability and proliferative capacity. Therefore, the cellulose‐based self‐healing hydrogels show potential applications in drug delivery and 3D cell culture for tissue engineering. 相似文献
9.
Lan Li Jiayi Li Jiamin Guo Huikang Zhang Xin Zhang Caiyun Yin Liming Wang Yishen Zhu Qingqiang Yao 《Advanced functional materials》2019,29(6)
Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair. 相似文献
10.
11.
A new class of simple, linear, amphiphilic peptides are developed that have the ability to undergo triggered self‐assembly into self‐supporting hydrogels. Under non‐gelling aqueous conditions, these peptides exist in a random coil conformation and peptide solutions have the viscosity of water. On the addition of a buffered saline solution, the peptides assemble into a β‐sheet rich network of fibrils, ultimately leading to hydrogelation. A family of nine peptides is prepared to study the influence of peptide length and amino acid composition on the rate of self‐assembly and hydrogel material properties. The amino acid composition is modulated by varying residue hydrophobicity and hydrophilicity on the two opposing faces of the amphiphile. The conformation of peptides in their soluble and gel state is studied by circular dichroism (CD), while the resultant material properties of their gels is investigated using oscillatory sheer rheology. One weight percent gels formed under physiological conditions have storage modulus (G′) values that vary from ≈20 to ≈800 Pa, with sequence length and hydrophobic character playing a dominant roll in defining hydrogel rigidity. Based on the structural and functional data provided by the nine‐peptide family members, an optimal sequence, namely LK13, is evolved. LK13 (LKLKLKLKLKLKL‐NH2) undergoes triggered self‐assembly, affording the most rigid gel of those studied (G′=797 ± 105). It displays shear thin‐recovery behavior, allowing its delivery by syringe and is cytocompatibile as assessed with murine C3H10t1/2 mesenchymal stem cells. 相似文献
12.
Corinna Schilling Thomas Mack Selene Lickfett Stefanie Sieste Francesco S. Ruggeri Tomas Sneideris Arghya Dutta Tristan Bereau Ramin Naraghi Daniela Sinske Tuomas P. J. Knowles Christopher V. Synatschke Tanja Weil Bernd Knll 《Advanced functional materials》2019,29(24)
There is an urgent need for biomaterials that support tissue healing, particularly neuronal regeneration. In a medium throughput screen novel self‐assembling peptide (SAP) sequences that form fibrils and stimulated nerve fiber growth of peripheral nervous system (PNS)‐derived neurons are identified. Based on the peptide sequences and fibril morphologies and by applying rational data‐mining, important structural parameters stimulating neuronal activity are elucidated. Three SAPs (SAP1e, SAP2e, and SAP5c) enhance adhesion and growth of PNS neurons. These SAPs form 2D and 3D matrices that serve as bioactive scaffolds stimulating cell adhesion and growth. The newly discovered SAPs also support the growth of CNS neurons and glia cells. Subsequently, the potential of SAPs to enhance PNS regeneration in vivo is analyzed. For this, the facial nerve driving whisker movement in mice is injured. Notably, SAPs persist for up to 3 weeks in the injury site indicating highly adhesive properties and stability. After SAP administration, more motor neurons incorporating markers for successive regeneration are observed. Recovery of whisker movement is elevated in SAP‐injected mice. In summary, short peptides that form fibrils are identified and the adhesion, growth, and regeneration of neurons have been efficiently enhanced without the necessity to attach hormones or growth factors. 相似文献
13.
Huae Xu Tingting Wang Chengbiao Yang Xiaolin Li Guan Liu Zhimou Yang Pankaj Kumar Singh Sunil Krishnan Dan Ding 《Advanced functional materials》2018,28(14)
Development of highly efficient radiosensitizers is urgently desirable for addressing the resistance of cancer cells to ionizing radiation, which is the main reason for the failure of radiotherapy. Here, it is reported for the first time that supramolecular nanomaterials can serve as an excellent nanoplatform for developing superior radiosensitizers. A new curcumin‐based supramolecular nanofiber (Cur‐SNF) by virtue of a self‐assembling short peptide is developed, which greatly boosts the radiosensitivity of colorectal cancers to ionizing radiation. The drug–peptide conjugate Curcumin‐FFE‐CS‐EE is synthesized and can self‐assemble into small‐molecule hydrogel containing Cur‐SNFs triggered by reductant. In vitro and in vivo radiosensitization studies reveal that as compared to free curcumin Cur‐SNFs show much better performance as a radiosensitizer to sensitize colorectal cancer cells to ionizing radiation thanks to the supramolecular nanostructure. Due to the exceptionally high radiosensitization efficacy, Cur‐SNFs in combination with radiation realize significant reduction in tumor volume in vivo. Besides, the molecular mechanism studies demonstrate that Cur‐SNFs promote the radiosensitivity of colorectal cancer cells through inhibiting radiation‐induced nuclear factor kappa B activation. Cur‐SNF achieves an ultralarge sensitizer enhancement ratio at 10% cell survival value of 2.01, the highest among currently reported curcumin‐based radiosensitizers. 相似文献
14.
Jinqiang Wang Shiqi Hu Weiwei Mao Jiajia Xiang Zhuxian Zhou Xiangrui Liu Jianbin Tang Youqing Shen 《Advanced functional materials》2019,29(7)
Peptide‐drug conjugates are prodrugs that have the advantages of precise molecular structure and the direct exploitation of tumor‐homing, penetration or the cellular uptake abilities of the peptides such as the neuropilin‐1 receptor targeting peptide. The prodrugs generally have fast blood clearance due to their low molecular weights and thus are made to self‐assemble into nanostructures, preferably nanosized micelles and vesicles for intravenous administration, to slow their renal clearance. However, most peptidyl prodrugs usually form precipitates, irregular nanofibers or gels that are unsuitable for intravenous injection. Herein, a arginine‐glycine‐aspartic acid‐lysine (RGDK) peptide and cytotoxin 7‐ethyl‐10‐hydroxycamptothecin (SN38) are used to synthesize the tumor‐homing prodrugs (SN38‐Peps) and explore their structure–micelle formation relationships. A small library of SN38‐Peps is obtained using different structures of peptides, linkers, and drug conjugation sites, and the factors affecting the assembly of SN38‐Peps as well as the stability of formed micelles are investigated. An optimized SN38‐Pep, (MOM)SN38(20)‐CRGDK, is finally obtained which forms stable micelles with a hydrodynamic diameter around 110 nm and a fixed drug loading content as high as 35%. The micelles show a prolonged blood circulation, significantly enhanced tumor accumulation, and therefore improved anticancer activity as compared to the non‐targeting prodrug and a clinically used anticancer drug. 相似文献
15.
Ali Ghoorchian Joseph R. Simon Bhuvnesh Bharti Wei Han Xuanhe Zhao Ashutosh Chilkoti Gabriel P. López 《Advanced functional materials》2015,25(21):3122-3130
Noncovalently cross‐linked networks are attractive hydrogel platforms because of their facile fabrication, dynamic behavior, and biocompatibility. The majority of noncovalently cross‐linked hydrogels, however, exhibits poor mechanical properties, which significantly limit their utility in load bearing applications. To address this limitation, hydrogels are presented composed of micelles created from genetically engineered, amphiphilic, elastin‐like polypeptides that contain a relatively large hydrophobic block and a hydrophilic terminus that can be cross‐linked through metal ion coordination. To create the hydrogels, heat is firstly used to trigger the self‐assembly of the polypeptides into monodisperse micelles that display transition metal coordination motifs on their coronae, and subsequently cross‐link the micelles by adding zinc ions. These hydrogels exhibit hierarchical structure, are stable over a large temperature range, and exhibit tunable stiffness, self‐healing, and fatigue resistance. Gels with polypeptide concentration of 10%, w/v, and higher show storage moduli of ≈1 MPa from frequency sweep tests and exhibit self‐healing within minutes. These reversibly cross‐linked, hierarchical hydrogels with enhanced mechanical properties have potential utility in a variety of biomedical applications. 相似文献
16.
Yuriy Zakrevskyy Marcel Richter Svitlana Zakrevska Nino Lomadze Regine von Klitzing Svetlana Santer 《Advanced functional materials》2012,22(23):5000-5009
The light‐induced reversible switching of the swelling of microgel particles triggered by photo‐isomerization and binding/unbinding of a photosensitive azobenzene‐containing surfactant is reported. The interactions between the microgel (N‐isopropylacrylamide, co‐monomer: allyl acetic acid, crosslinker: N,N′‐methylenebisacrylamide) and the surfactant are studied by UV‐Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in trans‐cis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant‐microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation. 相似文献
17.
18.
Mani Diba Winston A. Camargo Mariateresa Brindisi Kambiz Farbod Alexey Klymov Stephan Schmidt Matthew J. Harrington Lorenza Draghi Aldo R. Boccaccini John A. Jansen Jeroen J. J. P. van den Beucken Sander C. G. Leeuwenburgh 《Advanced functional materials》2017,27(45)
Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive glass particles, resulting in elastic composite gels. By tuning their composition, these composite colloidal gels combine mechanical robustness with self‐healing ability. The composite colloidal gels support cell proliferation and differentiation in vitro without requiring any osteogenic supplement. In vivo evaluation of the composite colloidal gels reveals their capacity to support the regeneration of osteoporotic bone defects. Furthermore, the bisphosphonate modification of gelatin induces a therapeutic effect on the peri‐implantation region by enhancing the bone density of the osteoporotic bone tissue. Consequently, these composite colloidal gels offer new therapeutic opportunities for treatment of osteoporotic bone defects. 相似文献
19.
Zhao Wei Jian Hai Yang Zhen Qi Liu Feng Xu Jin Xiong Zhou Miklós Zrínyi Yoshihito Osada Yong Mei Chen 《Advanced functional materials》2015,25(9):1352-1359
A novel biocompatible polysaccharide‐based self‐healing hydrogel, CEC‐l‐OSA‐l‐ADH hydrogel (“l” means “linked‐by”), is developed by exploiting the dynamic reaction of N‐carboxyethyl chitosan (CEC) and adipic acid dihydrazide (ADH) with oxidized sodium alginate (OSA). The self‐healing ability, as demonstrated by rheological recovery, macroscopic observation, and beam‐shaped strain compression measurement, is attributed to the coexistence of dynamic imine and acylhydrazone bonds in the hydrogel networks. The CEC‐l‐OSA‐l‐ADH hydrogel shows excellent self‐healing ability under physiological conditions with a high healing efficiency (up to 95%) without need for any external stimuli. In addition, the CEC‐l‐OSA‐l‐ADH hydrogel exhibits good cytocompatibility and cell release as demonstrated by three‐dimensional cell encapsulation. With these superior properties, the developed hydrogel holds great potential for applications in various biomedical fields, e.g., as cell or drug delivery carriers. 相似文献
20.