共查询到20条相似文献,搜索用时 15 毫秒
1.
Shanmugasundaram Kanagaraj Archana Puthanveedu Youngson Choe 《Advanced functional materials》2020,30(33)
Light‐emitting electrochemical cells (LECs) are solid‐state lighting devices that convert electric current to light within electroluminescent organic semiconductors, and these devices have recently attracted significant attention. Introduced in 1995, LECs are considered a great breakthrough in the field of light‐emitting devices for their applications in scalable and adaptable fabrication processes aimed at producing cost‐efficient devices. Since then, LECs have evolved through the discovery of new suitable emitters, understanding the working mechanism of devices, and the development of various fabrication methods. LECs are best known for their simple architecture and easy, low‐cost fabrication techniques. The key feature of their fabrication is the use of air stable electrodes and a single active layer consisting of mobile ions that enable efficient charge injection and transport processes within LEC devices. More importantly, LEC devices can be operated at low voltages with high efficiencies, contributing to their widespread interest. This review provides a general overview of the development of LECs and discusses how small molecules can be utilized in LEC applications by overcoming the use of traditional lighting materials like polymers and ionic transition metal complexes. The achievements of each study concerning small molecule LECs are discussed. 相似文献
2.
Since the birth of light‐emitting electrochemical cells (LECs) in 1995, white LECs (WLECs) still represent a milestone. To date, over 50 contributions have been reported, presenting record WLECs with brightness of up to 10 000 cd m?2, efficiencies of >10 cd A?1, and excellent color rendering index >90 in different contributions. This is achieved following three main strategies focused on modifying: i) the design of the emitters, that is, emissive aggregates, multiemissive mechanism, multifluorophoric emitters; ii) the active layer composition, that is, host–guest, multilayers, exciplex‐ and electroplex‐like emitting species systems; and iii) the device architecture, that is, tandem, photoactive filters, and microcavity/interfacial dipole effects. Herein, all of them are comprehensively discussed with respect to the above strategies in the frame of the type of emitters employed. Overall, this work highlights both the advances and challenges of the WLEC field. 相似文献
3.
Babak Pashaei Soheila Karimi Hashem Shahroosvand Melanie Pilkington 《Advanced functional materials》2020,30(33)
The development of near‐infrared (NIR) luminescent materials has emerged as a promising research field with important applications in solid‐state lighting (SSL), night‐vision‐readable displays, and the telecommunication industry. Over the past two decades, remarkable advances in the development of light‐emitting electrochemical cells (LECs) have stunned the SSL community, which has in turn driven the quest for new classes of stable, more efficient NIR emissive molecules. In this review, an overview of the state of the art in the field of near‐infrared light‐emitting electrochemical cells (NIR‐LEC) is provided based on three families of emissive compounds developed over the past 25 years: i) transition metal complexes, ii) ionic polymers, and iii) host–guest materials. In this context, ionic and conductive emitters are particularly attractive since their emission can be tuned via molecular design, which involves varying the chemical nature and substitution pattern of their ancillary ligands. Herein, the challenges and current limitations of the latter approach are highlighted, particularly with respect to developing NIR‐LECs with high external quantum efficiencies. Finally, useful guidelines for the discovery of new, efficient emitters for tailored NIR‐LEC applications are presented, together with an outlook towards the design of new NIR‐SSL materials. 相似文献
4.
无机、有机LED和EL白色发光及绿色照明 总被引:1,自引:0,他引:1
用无机白色LED照明由于不含Hg,因而无公害,被称为绿色照明。描述了无机LED的特性及进展,特别描述了与发光粉结合成新的白光LED的发展动态;同时还评述了无机白光EL和有机EL白光发射在绿色照明应用的可能性。 相似文献
5.
Lei He Juan Qiao Lian Duan Guifang Dong Deqiang Zhang Liduo Wang Yong Qiu 《Advanced functional materials》2009,19(18):2950-2960
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs. 相似文献
6.
Jude E. Namanga Hanwen Pei Guillaume Bousrez Bert Mallick Volodymyr Smetana Niels Gerlitzki Anja‐Verena Mudring 《Advanced functional materials》2020,30(33)
The combination of high efficiencies and long lifetime in a single light‐emitting electrochemical cell (LEC) device remain a major problem in LEC technology, preventing its application in commercial lighting devices. Three green light‐emitting cationic iridium‐based complexes of the general composition [Ir(C^N)2(N^N)][PF6] with 4‐Fppy (2‐(4‐fluorophenyl)pyridinato) as the cyclometalating C^N ligand and 1,10‐phenanthroline ( 1 ), 4,7‐diphenyl‐1,10‐phenanthroline (bathophenanthroline, bphen, 2 ), and 2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (bathocuprione, dmbphen, 3 ) as ancillary N^N ligands are synthesized and characterized. Computational studies are carried out in order to compare the electronic structure of the three ionic transition metal complexes (iTMCs) and provide insights into their potential as LEC emitter materials. LECs are then fabricated with complexes 1 – 3 . Driven under a pulsed current, they display a high luminance and current and power efficiencies. As the LEC based on complex 2 displays the overall best device performance, including the longest lifetime of 474 h, it is selected for subsequent driving conditions optimization. An extraordinary power efficiency of 25 lm W?1 and current efficiency of 30 cd A?1 are achieved under optimized operation conditions with reduced current density, resulting in a long device lifetime of 720 h. Altogether, ligand design in iTMCs and optimization of the device driving conditions leads to a significant improvement in LEC performance. 相似文献
7.
8.
9.
Elisa Fresta Jacopo Dosso Juan Cabanillas‐Gonzlez Davide Bonifazi Rubn D. Costa 《Advanced functional materials》2020,30(33)
White‐light‐emitting electrochemical cells (WLECs) still represent a significant milestone, since only a few examples with moderate performances have been reported. Particularly, multiemissive white emitters are highly desired, as a paradigm to circumvent phase separation and voltage‐dependent emission color issues that are encountered following host:guest and multilayered approaches. Herein, the origin of the exclusive white ternary electroluminescent behavior of BN‐doped nanographenes with a B3N3 doping pattern (hexa‐perihexabenzoborazinocoronene) is rationalized, leading to one of the most efficient (≈3 cd A?1) and stable‐over‐days single‐component and single‐layered WLECs. To date, BN‐doped nanographenes have featured blue thermally activated delayed fluorescence (TADF). This doping pattern provides, however, white electroluminescence spanning the whole visible range (x/y CIE coordinates of 0.29–31/0.31–38 and average color rendering index (CRI) of 87) through a ternary emission involving fluorescence and thermally activated dual phosphorescence. This temperature‐dependent multiemissive mechanism is operative for both photo‐ and electroluminescence processes and holds over the device lifespan, regardless of the device architecture, active layer composition, and operating conditions. As such, this work represents a new stepping‐stone toward designing a new family of multiemissive white emitters based on BN‐doped nanographenes that realizes one of the best‐performing single‐component white‐emitting devices compared to the prior‐art. 相似文献
10.
Enhancing the efficiency and lifetime of light emitting electrochemical cells (LEC) is the most important challenge on the way to energy efficient lighting devices of the future. To avail this, emissive Ir(III) complexes with fluoro‐substituted cyclometallated ligands and electron donating groups (methyl and tert ‐butyl)‐substituted diimine ancillary (N^N) ligands and their associated LEC devices are studied. Four different complexes of general composition [Ir(4ppy)2(N^N)][PF6] (4Fppy = 2‐(4‐fluorophenyl)pyridine) with the N^N ligand being either 2,2′‐bipyridine ( 1 ), 4.4′‐dimethyl‐2,2′‐bipyridine ( 2 ), 5.5′‐dimethyl‐2,2′‐bipyridine ( 3 ), or 4.4′‐di‐tert ‐butyl‐2,2′‐bipyridine ( 4 ) are synthesized and characterized. All complexes emit in the green region of light with emission maxima of 529–547 nm and photoluminescence quantum yields in the range of 50.6%–59.9%. LECs for electroluminescence studies are fabricated based on these complexes. The LEC based on ( 1 ) driven under pulsed current mode demonstrated the best performance, reaching a maximum luminance of 1605 cd m?2 resulting in 16 cd A?1 and 8.6 lm W?1 for current and power efficiency, respectively, and device lifetime of 668 h. Compared to this, LECs based on ( 3 ) and ( 4 ) perform lower, with luminance and lifetime of 1314 cd m?2, 45.7 h and 1193 cd m?2, 54.9 h, respectively. Interestingly, in contrast to common belief, the fluorine content of the Ir‐iTMCs does not adversely affect the LEC performance, but rather electron donating substituents on the N^N ligands are found to dramatically reduce both performance and stability of the green LECs. In light of this, design concepts for green light emitting electrochemical devices have to be reconsidered. 相似文献
11.
Elisa Fresta Verónica Fernández‐Luna Pedro B. Coto Rubén D. Costa 《Advanced functional materials》2018,28(24)
Solid‐state lighting (SSL) is one of the biggest achievements of the 20th century. It has completely changed our modern life with respect to general illumination (light‐emitting diodes), flat devices and displays (organic light‐emitting diodes), and small labeling systems (light‐emitting electrochemical cells). Nowadays, it is however mandatory to make a transition toward green, sustainable, and equally performing lighting systems. In this regard, several groups have realized that the actual SSL technologies can easily and efficiently be improved by getting inspiration from how natural systems that manipulate light have been optimized over millennia. In addition, various natural and biocompatible materials with suitable properties for lighting applications have been used to replace expensive and unsustainable components of current lighting devices. Finally, SSL has also started to revolutionize the biomedical field with the achievement of efficient implantable lighting systems. Herein, the‐state‐of‐art of (i) biological materials for lighting devices, (ii) bioinspired concepts for device designs, and (iii) implantable SSL technologies is summarized, highlighting the perspectives of these emerging fields. 相似文献
12.
用有机混合物实现对微腔电致发光光谱的调制 总被引:1,自引:1,他引:0
制做了一种新型的有机电致微腔器件,将两种有机材料混合作为发光材料,通过改变NPB和Alq的重量比(从1:28改变到17:1),达到了调节腔长从而改变器件发光颜色的目的,且器件发光颜色不随所加电压变化;通过合理地调节两种材料的配比,可以实现微腔白光发射。5种配比的微腔器件均发出半宽度很窄的双模发射(8~12nm);与传统的异质结微腔器件相比,开启电压从7V降到4V,亮度也得到了提高。 相似文献
13.
14.
Kareem Youssef Ying Li Samantha O'Keeffe Lu Li Qibing Pei 《Advanced functional materials》2020,30(33)
The in situ formation of a light‐emitting p–n or p–i–n junction in light‐emitting electrochemical cells (LECs) necessitates mixed ionic–electronic conductors in the active layer. This unique characteristic requires electronic, luminescent, and ionic ingredients that work synergistically in the LECs. The material requirements that lead to promising electroluminescent properties are discussed and the important components reported so far are surveyed. Particular attention is paid to the working mechanisms behind junction formation and stabilization to create efficient and stable electroluminescence in conjugated‐polymer‐based LECs. Keeping these fundamentals in mind explains how LEC devices have evolved from classic conjugated polymer blends into highly stable crosslinked, hybrid composite, and stretchable device architectures. To conclude, a future development strategy is proposed based on a dual approach: develop new materials specifically for LEC devices and explore novel ways to efficiently process and stabilize the p–i–n junction, which will drive improvements in both LEC external quantum efficiency and operating lifetime toward truly low‐cost solid‐state lighting applications. 相似文献
15.
Carsten Rothe Chien‐Jung Chiang Vygintas Jankus Khalid Abdullah Xianshun Zeng Rukkiat Jitchati Andrei S. Batsanov Martin R. Bryce Andrew P. Monkman 《Advanced functional materials》2009,19(13):2038-2044
Here, the photophysics and performance of single‐layer light emitting cells (LECs) based on a series of ionic cyclometalated Ir(III) complexes of formulae and where ppy, bpy, and phen are 2‐phenylpyridine, substituted bipyridine and substituted phenanthroline ligands, respectively, are reported. Substitution at the N?N ligand has little effect on the emitting metal‐ligand to ligand charge‐transfer (MLLCT) states and functionalization at this site of the complex leads to only modest changes in emission color. For the more bulky complexes the increase in intermolecular separation leads to reduced exciton migration, which in turn, by suppressing concentration quenching, significantly increases the lifetime of the excited state. On the other hand, the larger intermolecular separation induced by bulky ligands reduces the charge carrier mobility of the materials, which means that higher bias fields are needed to drive the diodes. A brightness of ca. 1000 cd m?2 at 3 V is obtained for complex 5, which demonstrates a beneficial effect of bulky substituents. 相似文献
16.
Sergio Brovelli Giuseppe Sforazzini Michele Serri Gustaf Winroth Kosuke Suzuki Francesco Meinardi Harry L. Anderson Franco Cacialli 《Advanced functional materials》2012,22(20):4284-4291
White electroluminescence and fine‐tuning of the emission color from binary blends of a blue‐emitting polymer and a green/yellow‐emitting threaded molecular wire consisting of a conjugated polymer supramolecularly encapsulated by functionalized cyclodextrins are demonstrated. Encapsulation controls the minimum intermolecular distance on the nanoscale, resulting in suppressed energy‐transfer between the blend constituents and reduced formation of interchain charge‐transfer complexes. The use of a green‐emitting polyrotaxane significantly improves the electrical properties with respect to blends of a blue electroluminescent polyrotaxane and leads to a significant reduction in the turn‐on voltage required for achieving white electroluminescence (VON = 3 V), with only 20% by weight of the encapsulated material. 相似文献
17.
Jing Zhang Li Zhou Hameed A. Al‐Attar Kuizhan Shao Li Wang Dongxia Zhu Zhongmin Su Martin R. Bryce Andrew P. Monkman 《Advanced functional materials》2013,23(37):4667-4677
Eight new iridium(III) complexes 1‐8 , with 1,3,4‐oxadiazole (OXD) derivatives as the cyclometalated C^N ligand and/or the ancillary N^N ligands are synthesized and their electrochemical, photophysical, and solid‐state light‐emitting electrochemical cell (LEC) properties are investigated. Complexes 1 , 2 , 7 and 8 are additionally characterized by single crystal X‐ray diffraction. LECs based on complexes 1‐8 are fabricated with a structure indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/cationic iridium complex:ionic liquid/Al. LECs of complexes 1 – 6 with OXD derivatives as the cyclometalated ligands and as the ancillary ligand show yellow luminescence (λmax = 552–564 nm). LECs of complexes 7 and 8 with cyclometalated C^N phenylpyridine ligands and an ancillary N^N OXD ligand show red emission (λmax 616–624 nm). Using complex 7 external quantum efficiency (EQE) values of >10% are obtained for devices (210 nm emission layer) at 3.5 V. For thinner devices (70 nm) high brightness is achieved: red emission for 7 (8528 cd m?2 at 10 V) and yellow emission for 1 (3125 cd m?2 at 14 V). 相似文献
18.
19.
Solid‐state white light‐emitting electrochemical cells (LECs) exhibit the following advantages: simple device structures, low operation voltage, and compatibility with inert metal electrodes. LECs have been studied extensively since the first demonstration of white LECs in 1997, due to their potential application in solid‐state lighting. This review provides an overview of recent developments in white LECs, specifically three major aspects thereof, namely, host–guest white LECs, nondoped white LECs, and device engineering of white LECs. Host–guest strategy is widely used in white LECs. Host materials are classified into ionic transition metal complexes, conjugated polymers, and small molecules. Nondoped white LECs are based on intra‐ or intermolecular interactions of emissive and multichromophore materials. New device engineering techniques, such as modifying carrier balance, color downconversion, optical filtering based on microcavity effect and localized surface plasmon resonance, light extraction enhancement, adjusting correlated color temperature of the output electroluminescence spectrum, tandem and/or hybrid devices combining LECs with organic light‐emitting diodes, and quantum‐dot light‐emitting diodes improve the device performance of white LECs by ways other than material‐oriented approaches. Considering the results of the reviewed studies, white LECs have a bright outlook. 相似文献
20.
Shiu‐Lun Lai Wai‐Yip Tong Steven C. F. Kui Mei‐Yee Chan Chi‐Chung Kwok Chi‐Ming Che 《Advanced functional materials》2013,23(41):5168-5176
A new class of charge neutral, strongly luminescent cyclometalated platinum(II) complexes supported by dianionic tetradentate ligand are synthesized. One of these platinum(II) complexes, Y‐Pt , displays a high photoluminescence quantum yield of 86% and electroluminescence efficacy (ηpower) of up to 52 lm W?1, and is utilized as a yellow phosphorescent dopant in the fabrication of white organic light‐emitting devices (WOLEDs). WOLEDs based on conventional structures with yellow emission from Y‐Pt in combination with blue emission from bis(4,6‐difluorophenyl‐pyridinato‐N,C2′) (picolinate) iridium(III) (FIrpic) show a total ηpower of up to 31 lm W?1. A two‐fold increase in ηpower by utilizing a modified WOLED structure comprising of a composite blue host is realized. With this modified device structure, the total ηpower and driving voltage at a luminance of 1000 cd m?2 can be improved to 61 lm W?1 and 7.5 V (i.e., 10 V for control devices). The performance improvement is attributed to an effectively broaden exciton formation‐recombination zone and alleviation of localized exciton accumulation within the FIrpic‐doped composite host for reduced triplet‐triplet annihilation, yielding blue light‐emission with enhanced intensity. The modified device structure can also adopt a higher concentration of Y‐Pt towards its optimal value, leading to WOLEDs with high efficiency. 相似文献