首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of low‐cost, high‐energy cathodes from nontoxic, broadly available resources is a big challenge for the next‐generation rechargeable lithium or lithium‐ion batteries. As a promising alternative to traditional intercalation‐type chemistries, conversion‐type metal fluorides offer much higher theoretical capacity and energy density than conventional cathodes. Unfortunately, these still suffer from irreversible structural degradation and rapid capacity fading upon cycling. To address these challenges, here a versatile and effective strategy is harnessed for the development of metal fluoride–carbon (C) nanocomposite nanofibers as flexible, free‐standing cathodes. By taking iron trifluoride (FeF3) as a successful example, assembled FeF3–C/Li cells with a high reversible FeF3 capacity of 550 mAh g?1 at 100 mA g?1 (three times that of traditional cathodes, such as lithium cobalt oxide, lithium nickel cobalt aluminum oxide, and lithium nickel cobalt manganese oxide) and excellent stability (400+ cycles with little‐to‐no degradation) are demonstrated. The promising characteristics can be attributed to the nanoconfinement of FeF3 nanoparticles, which minimizes the segregation of Fe and LiF upon cycling, the robustness of the electrically conductive C network and the prevention of undesirable reactions between the active material and the liquid electrolyte using the composite design and electrolyte selection.  相似文献   

2.
A cathode material of an electrically conducting carbon‐LiMnPO4 nanocomposite is synthesized by ultrasonic spray pyrolysis followed by ball milling. The effect of the carbon content on the physicochemical and electrochemical properties of this material is extensively studied. A LiMnPO4 electrode with 30 wt% acetylene black (AB) carbon exhibits an excellent rate capability and good cycle life in cell tests at 55 and 25 °C. This electrode delivers a discharge capacity of 158 mAh g?1 at 1/20 C, 126 mAh g?1 at 1 C, and 107 mAh g?1 at 2 C rate, which are the highest capacities reported so far for this type of electrode. Transmission electron microscopy and Mn dissolution results confirm that the carbon particles surrounding the LiMnPO4 protect the electrode from HF attack, and thus lead to a reduction of the Mn dissolution that usually occurs with this electrode. The improved electrochemical properties of the C‐LiMnPO4 electrode are also verified by electrochemical impedance spectroscopy.  相似文献   

3.
Li[Ni0.65Co0.13Mn0.22]O2 cathode with two‐sloped full concentration gradient (TSFCG), maximizing the Ni content in the inner part of the particle and the Mn content near the particle surface, is synthesized via a specially designed batch‐type reactor. The cathode delivers a discharge capacity of 200 mAh g?1 (4.3 V cutoff) with excellent capacity retention of 88% after 1500 cycles in a full‐cell configuration. Overall electrochemical performance of the TSFCG cathode is benchmarked against conventional cathode (CC) with same composition and commercially available Li[Ni0.8Co0.15Al0.05]O2 (NCA). The TSFCG cathode exhibits the best cycling stability, rate capability, and thermal stability of the three electrodes. Transmission electron microscopy analysis of the cycled TSFCG, CC, and NCA cathodes shows that the TSFCG electrode maintains both its mechanical and structural integrity whereas the NCA electrode nearly pulverizes due to the strain during cycling.  相似文献   

4.
As one of the essential components in electrodes, the binder affects the performance of a rechargeable battery. By modifying β‐cyclodextrin (β‐CD), an appropriate binder for sulfur composite cathodes is identified. Through a partial oxidation reaction in H2O2 solution, β‐CD is successfully modified to carbonyl‐β‐cyclodextrin (C‐β‐CD), which exhibits a water solubility ca. 100 times that of β‐CD at room temperature. C‐β‐CD possesses the typical properties of an aqueous binder: strong bonding strength, high solubility in water, moderate viscosity, and wide electrochemical windows. Sulfur composite cathodes with C‐β‐CD as the binder demonstrate a high reversible capacity of 694.2 mA h g(composite)?1 and 1542.7 mA h g(sulfur)?1, with a sulfur utilization approaching 92.2%. The discharge capacity remains at 1456 mA h g(sulfur)?1 after 50 cycles, which is much higher than that of the cathode with unmodified β‐CD as binder. Combined with its low cost and environmental benignity, C‐β‐CD is a promising binder for sulfur cathodes in rechargeable lithium batteries with high electrochemical performance.  相似文献   

5.
Lithium sulfide (Li2S) has attracted increasing attention as a promising cathode because of its compatibility with more practical lithium‐free anode materials and its high specific capacity. However, it is still a challenge to develop Li2S cathodes with low electrochemical overpotential, high capacity and reversibility, and good rate performance. This work designs and fabricates a practical Li2S cathode composed of Li2S/few‐walled carbon nanotubes@reduced graphene oxide nanobundle forest (Li2S/FWNTs@rGO NBF). Hierarchical nanostructures are obtained by annealing the Li2SO4/FWNTs@GO NBF, which is prepared by a facile and scalable solution‐based self‐assembly method. Systematic characterizations reveal that in this unique NBF nanostructure, FWNTs act as axial shafts to direct the structure, Li2S serves as the internal active material, and GO sheets provide an external coating to minimize the direct contact of Li2S with the electrolyte. When used as a cathode, the Li2S/FWNTs@rGO NBF achieve a high capacity of 868 mAh g?1Li2S at 0.2C after 300 cycles and an outstanding rate performance of 433 mAh g?1Li2S even at 10C, suggesting that this Li2S cathode is a promising candidate for ultrafast charge/discharge applications. The design and synthetic strategies outlined here can be readily applied to the processing of other novel functional materials to obtain a much wider range of applications.  相似文献   

6.
A facile synthesis of selenium sulfide (SeSx)/carbonized polyacrylonitrile (CPAN) composites is achieved by annealing the mixture of SeS2 and polyacrylonitrile (PAN) at 600 °C under vacuum. The SeSx molecules are confined by N‐containing carbon (ring) structures in the carbonized PAN to mitigate the dissolution of polysulfide and polyselenide intermediates in carbonate‐based electrolyte. In addition, formation of solid electrolyte interphase (SEI) on the surface of SeSx/CPAN electrode in the first cycle further prevents polysulfide and polyselenide intermediates from dissolution. The synergic restriction of SeSx by both CPAN matrix and SEI layer allows SeSx/CPAN composites to be charged and discharged in a low‐cost carbonate‐based electrolyte (LiPF6 in EC/DEC) with long cycling stability and high rate capability. At a current density of 600 mA g?1, it maintains a reversible capacity of 780 mAh g?1 for 1200 cycles. Moreover, it retains 50% of the capacity at 60 mA g?1 even when the current density increases to 6 A g?1. The superior electrochemical performance of SeSx/CPAN composite demonstrates that it is a promising cathode material for long cycle life and high power density lithium ion batteries. This is the first report on long cycling stability and high rate capability of selenium sulfide‐based cathode material.  相似文献   

7.
Li2MnSiO4/C nanocomposite with hierarchical macroporosity is prepared with poly(methyl methacrylate) (PMMA) colloidal crystals as a sacrificial hard‐template and water‐soluble phenol‐formaldehyde (PF) resin as the carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirm that the periodic macropores are ≈400 nm in diameter with 20–40 nm walls comprising Li2MnSiO4/C nanocrystals that produce additional large mesopores (< 30 nm) between the nanocrystals. The nanostructured Li2MnSiO4/C cathode exhibits a high reversible discharge capacity of 200 mAh g?1 at C/10 (16 mA g?1) rate at 1.5–4.8 V at 45 °C. Although the discharge capacity can be further increased on operating at 55 °C, the sample exhibits a relatively fast capacity fade at 55 °C, which can be partially solved by simply narrowing the voltage window to avoid side reactions of the electrolyte. The good performance of the Li2MnSiO4/C cathodes is attributed to the unique macro‐/mesostructure of the silicate coupled with uniform carbon coating.  相似文献   

8.
The pursuit of rechargeable batteries with high energy density has triggered enormous efforts in developing cathode materials for lithium/sodium (Li/Na)-ion batteries considering their extremely high specific capacity. Many materials are being researched for battery applications, and transition metal oxide materials with remarkable electrochemical performance stand out among numerous cathode candidates for next-generation battery. Notwithstanding the merits, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because the voltage hysteresis between the charge and discharge cycles, is historically avoided in intercalation electrodes because of its association with structural disorder and electrochemical irreversibility. Given the great potential of these materials for next-generation batteries, a review of the recent understanding of voltage hysteresis is timely. This review presents the origin of their undesirable behaviors and materials design criteria to mitigate them by integrating various schools of thought. A large amount of progressive characterization techniques related to voltage hysteresis are summarized from the literature, along with the corresponding measurable range used in their determination. Finally, promising design trends with eliminated voltage hysteresis are tentatively proposed to revive these important cathode materials toward practical applications.  相似文献   

9.
Natural polymer nanofibers are attractive sustainable raw materials to fabricate separators for high‐performance lithium ion batteries (LIBs). Unfortunately, complicated pore‐forming processes, low ionic conductivity, and relatively low mechanical strength of previously reported natural polymer nanofiber‐based separators severely limit their performances and applications. Here, a chemical modification strategy to endow high performance to natural polymer nanofiber‐based separators is demonstrated by grafting cyanoethyl groups on the surface of chitin nanofibers. The fabricated cyanoethyl‐chitin nanofiber (CCN) separators not only exhibit much higher ionic conductivity but also retain excellent mechanical strength in comparison to unmodified chitin nanofiber separators. Through density function theory calculations, the mechanism of high Li+ ion transport in the CCN separator is unraveled as weakening of the binding of Li+ ions over that of PF6? ions with chitin, via the cyanoethyl modification. The LiFePO4/Li4Ti5O12 full cells using CCN separators show much better rate capability and enhanced capacity retention compared to the cell using commercial polypropylene (PP) separators. Beyond this, the CCN separator can work very well even at an elevated temperature of 120 °C in the LiFePO4/Li cell. The proposed strategy chemical modification of natural polymer nanofibers will open a new avenue to fabricate sustainable separators for LIBs with superior performance.  相似文献   

10.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

11.
12.
An increase in the energy density of lithium‐ion batteries has long been a competitive advantage for advanced wireless devices and long‐driving electric vehicles. Li‐rich layered oxide, xLi2MnO3?(1?x)LiMn1?y?zNiyCozO2, is a promising high‐capacity cathode material for high‐energy batteries, whose capacity increases by increasing charge voltage to above 4.6 V versus Li. Li‐rich layered oxide cathode however suffers from a rapid capacity fade during the high‐voltage cycling because of instable cathode–electrolyte interface, and the occurrence of metal dissolution, particle cracking, and structural degradation, particularly, at elevated temperatures. Herein, this study reports the development of fluorinated polyimide as a novel high‐voltage binder, which mitigates the cathode degradation problems through superior binding ability to conventional polyvinylidenefluoride binder and the formation of robust surface structure at the cathode. A full‐cell consisting of fluorinated polyimide binder‐assisted Li‐rich layered oxide cathode and conventional electrolyte without any electrolyte additive exhibits significantly improved capacity retention to 89% at the 100th cycle and discharge capacity to 223–198 mA h g?1 even under the harsh condition of 55 °C and high charge voltage of 4.7 V, in contrast to a rapid performance fade of the cathode coated with polyvinylidenefluoride binder.  相似文献   

13.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

14.
15.
The electrochemical properties and phase stability of the multi‐component olivine compound LiMn1/3Fe1/3Co1/3PO4 are studied experimentally and with first‐principles calculation. The formation of a solid solution between LiMnPO4, LiFePO4, and LiCoPO4 at this composition is confirmed by XRD patterns and the calculated energy. The experimental and first‐principle results indicate that there are three distinct regions in the electrochemical profile at quasi‐open‐circuit potentials of 3.5 V, ~4.1 V, and ~4.7 V, which are attributed to Fe3+/Fe2+, Mn3+/Mn2+, and Co3+/Co2+ redox couples, respectively. However, exceptionally large polarization is observed only for the region near 4.1 V of Mn3+/Mn2+ redox couples, implying an intrinsic charge transfer problem. An ex situ XRD study reveals that the reversible one‐phase reaction of Li extraction/insertion mechanism prevails, unexpectedly, for all lithium compositions of LixMn1/3Fe1/3Co1/3PO4 (0 ≤ x ≤ 1) at room temperature. This is the first demonstration that the well‐ordered, non‐nanocrystalline (less than 1% Li–M disorder and a few hundred nanometer size particle) olivine electrode can be operated solely in a one‐phase mode.  相似文献   

16.
High-energy Ni-rich lithium transition metal oxides such as Li[Ni0.8Co0.1Mn0.1]O2 (NCM811) are appealing positive electrode materials for next-generation lithium batteries. However, the high sensitivity toward moist air during storage and the high reactivity with common organic electrolytes, especially at elevated temperatures, are hindering their commercial use. Herein, an effective strategy is reported to overcome these issues by coating the NCM811 particles with a lithium phosphonate functionalized poly(aryl ether sulfone). The application of this coating allows for a substantial reduction of lithium-based surface impurities (e.g., LiOH, Li2CO3) and, generally, the suppression of detrimental side reactions upon both storage and cycling. As a result, the coated NCM811-based cathodes reveal superior Coulombic efficiency and cycling stability at ambient and, particularly, at elevated temperatures up to 60 ° C (a temperature at which the non-coated NCM811 electrodes rapidly fail) owing to the formation of a stable cathode electrolyte interphase with enhanced Li+ transport kinetics and the well-retained layered crystal structure. These results render the herein presented coating strategy generally applicable for high-performance lithium battery cathodes.  相似文献   

17.
Single‐crystalline nanotubes of spinel LiMn2O4 with a diameter of about 600 nm, a wall thickness of about 200 nm and a length of 1–4 μm have been synthesized via a template‐engaged reaction using β‐MnO2 nanotubes as a self‐sacrifice template. In this fabrication, a minimal structural reorganization can be responsible for the chemical transformation from [001]‐oriented β‐MnO2 template to [110]‐oriented LiMn2O4. Galvanostatic charge/discharge measurements indicate that the nanotubes exhibit superior high‐rate capabilities and good cycling stability. About 70% of its initial capacity can be retained after 1500 cycles at 5 C rate. Importantly, the tubular nanostructures and the single‐crystalline nature of the most LiMn2O4 nanotubes are also well preserved after prolonged charge/discharge cycling at a relatively high current density, indicating good structural stability of the single‐crystalline nanotubes during lithium intercalation/deintercalation process. As is confirmed from Raman spectra analyses, no evident microstructural changes occur upon long‐term cycling. These results reveal that single‐crystalline nanotubes of LiMn2O4 will be one of the most promising cathode materials for high‐power lithium ion batteries.  相似文献   

18.
Effectively preventing graphene stacking and maintaining ultrathin layers remains a significant research effort for graphene preparation and applications. In this paper, a novel synthetic strategy based on catalyst migration on the surface of a salt template to control the growth of graphene is used to prepare 3D edge‐curled graphene (3D ECG). Under the synergistic effect of the steric hindrance and the migration of the Ni catalyst, 3D ECG forms a special structure in which the intermediate portion is flat and the edge is curled. The resultant unique structure not only effectively prevents the close stacking and aggregation of graphene, but also significantly improves its lithium storage performance. As an anode for lithium ion batteries, the reversible specific capacity can reach 907.5 and 347.8 mAh g?1 at the current density of 0.05 and 5.0 A g?1. Even after 1000 cycles, the specific capacity of 3D ECG can still be maintained at 605.2 mAh g?1 at a current density of 0.5 A g?1, demonstrating excellent rate performance and cycle performance. This new synthesis strategy and unique edge‐curled structure can be used to guide more design of 3D graphene materials for further functional applications.  相似文献   

19.
A critical bottleneck that hinders major performance improvement in lithium‐ion and sodium‐ion batteries is the inferior electrochemical activity of their cathode materials. While significant research progresses have been made, conventional single‐phase cathodes are still limited by intrinsic deficiencies such as low reversible capacity, enormous initial capacity loss, rapid capacity decay, and poor rate capability. In the past decade, layer‐based heterostructured cathodes acquired by combining multiple crystalline phases have emerged as candidates with a huge potential to realize performance breakthrough. Herein, recent studies on the structural properties, electrochemical behaviors, and synthesis route optimizations of these heterostructured cathodes are summarized for in‐depth discussions. Particular attention is paid to the latest mechanism discoveries and performance achievements. This review thus aims to promote a deeper understanding of the correlation between the crystal structure of cathodes and their electrochemical behavior, and offers guidance to design advance cathode materials from the aspect of crystal structure engineering.  相似文献   

20.
Surface modification of carbon materials plays an important role in tailoring carbon surface chemistry to specify their electrochemical performance. Here, a surface modification strategy for graphene is proposed to produce LiF‐nanoparticle‐modified graphene as a high‐rate, large‐capacity pre‐lithiated electrode for high‐power and high‐energy lithium ion batteries. The LiF nanoparticles covering the active sites of the graphene surface provide an extra Li source and act as an effective solid electrolyte interphase (SEI) inhibiter to suppress LiFP6 electrolyte decomposition reactions, affect SEI components, and reduce their thickness. Consequently, the Li‐ion diffusion is greatly sped up and the thermodynamic stability of the electrode is significantly improved. This modified graphene electrode shows excellent rate capability and improved first‐cycle coulombic efficiency, cycling stability, and ultrahigh power and energy densities accessible during fast charge/discharge processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号