首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

2.
Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm?2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g?1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications.  相似文献   

3.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

4.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

5.
Lithium–oxygen batteries with an exceptionally high theoretical energy density have triggered worldwide interest in energy storage system. The research focus of lithium–oxygen batteries lies in the development of catalytic materials with excellent cycling stability and high bifunctional catalytic activity in oxygen reduction and oxygen evolution reactions. Here, a hierarchically porous flower‐like cobalt–titanium layered double oxide on nickel foam with intercalated anions of bistrifluoromethane sulfonamide (TFSI) is designed and prepared. When used as a binder‐free cathode for lithium–oxygen batteries, this material exhibits low polarization (initial polarization of 0.45 V) and superior cycling stability (80 cycles at a current density of 100 mA g?1 at full discharge/charge). The high electrochemical performance of the cathode material is attributed to the good dispersion of binary elements in its host layer and good compatibility with lithium bistrifluoromethane sulfonamide electrolyte induced by intercalated guest anions of TFSI within its interlayer. This work provides a novel strategy for the fabrication of binder‐free cathodes based on layered double oxides for high‐performance lithium–oxygen batteries.  相似文献   

6.
Graphene‐based materials have been widely studied to overcome the hurdles of Li–S batteries, but suffer from low adsorptivity to polar polysulfide species, slow mass transport of Li+ ions, and severe irreversible agglomeration. Herein, via a one‐step scalable calcination process, a holey Fe, N codoped graphene (HFeNG) is successfully synthesized to address these problems. Diverging by the holey structures, the Fe atoms are anchored by four N atoms (Fe–N4 moiety) or two N atoms (Fe–N2 moiety) localized on the graphene sheets and edge of holes, respectively, which is confirmed by X‐ray absorption spectroscopy and density functional theory calculations. The unique holey structures not only promote the mass transport of lithium ions, but also prohibit the transportation of polysulfides across these additional channels via strong adsorption forces of Fe–N2 moiety at the edges. The as‐obtained HFeNG delivers a high rate capacity of 810 mAh g?1 at 5 C and a stable cycling performance with the capacity decay of 0.083% per cycle at 0.5 C. The concept of holey structure and introduction of polar moieties could be extended to other carbon and 2D nanostructures for energy storage and conversion devices such as supercapacitors, alkali‐ion batteries, metal–air batteries, and metal–halogen batteries.  相似文献   

7.
Lithium–oxygen batteries are attracting more and more interest; however, their poor rechargeability and low efficiency remain critical barriers to practical applications. Herein, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are prepared through an economical and environmentally benign sol–gel route, which show high electrocatalytic activity and stable cyclability over 160 cycles as cathodes for Li–O2 batteries. Such good performance owes to the coexistence of macrochannels and mesopores in C–N hierarchical architectures, which greatly facilitate the Li+ diffusion and electrolyte immersion, as well as provide an effective space for O2 diffusion and O2/Li2O2 conversion. Additionally, the mechanism of oxygen reduction reactions is discussed with the N‐rich carbon materials through first‐principles computations. The lithiated pyridinic N provides excellent O2 adsorption and activation sites, and thus catalyzes the electrode processes. Therefore, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are promising cathodes for Li–O2 batteries.  相似文献   

8.
Sn‐based materials have triggered significant research efforts as anodes for lithium‐storage because of their high theoretical capacity. However, the practical applications of Sn‐based materials are hindered by low capacity release and poor cycle life, which are mainly caused by structural pulverization and large volume changes on cycling. Herein, a surfactant‐assisted assembly method is developed to fabricate 3D nanoarchitectures in which Sn‐based nanoparticles are encapsulated by a porous graphene network. More precisely, the graphene forms a 3D cellular network, the interstices of which only partially filled by the electroactive masses, thus establishing a high concentration of interconnected nanosized pores. While the graphene‐network itself guarantees fast electron transfer, it is the characteristic presence of nanosized pores in our network that leads to the favorable rate capability and cycling stability by i) accommodating the large volume expansion of Sn‐based nanoparticles to ensure integrity of the 3D framework upon cycling and ii) enabling rapid access of Li‐ions into Sn‐based nanoparticles, which are in addition prevented from agglomerating. As a result, the 3D Sn‐based nanoarchitectures deliver excellent electrochemical properties including high rate capability and stable cycle performance. Importantly, this strategy provides a new pathway for the rational engineering of anode materials with large volume changes to achieve improved electrochemical performances.  相似文献   

9.
3D graphene aerogel (GA) integrated with active metal or its derivatives has emerged as a novel class of multifunctional constructs with range of potential applications. However, GA fabricated by self‐assembly in the liquid phase still suffers from low conductivity and poor knowledge related to spatial active phase distribution and 3D structure. To address these issues, a facile approach involving in situ integration of 1D silver nanowire (AgNW) during gelation of graphene oxide flakes is presented. AgNWs prevent the restacking of graphene sheets and act as an efficient electron highway and Ag source for deposition of ultrasmall Ag nanocrystals (AgNCs). When applied as the cathodic electrocatalyst in a zinc–air battery, the 3D GA integrated with 0D AgNCs and 1D AgNWs permit ultrahigh discharge rates of up to 300 mA cm?2. Moreover, for the first time, with the help of phase‐contrast X‐ray computed microtomography, the interconnected porous network of millimeter‐sized GA and a full‐field view of the macrodistribution of Ag is delivered, offering the vitally complementary macroscopic structure information, which has been missing in previous reports.  相似文献   

10.
Ultrathin MnO2/graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide‐trapping shields for high‐performance Li–S batteries. A simple layer‐by‐layer procedure is used to construct a sandwiched vein–membrane interlayer of thickness 2 µm and areal density 0.104 mg cm?2 by loading MnO2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li–S cells with high sulfur loadings (60–80 wt%), a low capacity decay rate (?0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g?1 at a charge rate of 10 C), and a low self‐discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide‐trapping ability of the G/M@CNT interlayer and show its potential in developing high‐performance Li–S batteries.  相似文献   

11.
Li–CO2 batteries are an attractive technology for converting CO2 into energy. However, the decomposition of insulating Li2CO3 on the cathode during discharge is a barrier to practical application. Here, it is demonstrated that a high loading of single Co atoms (≈5.3%) anchored on graphene oxide (adjacent Co/GO) acts as an efficient and durable electrocatalyst for Li–CO2 batteries. This targeted dispersion of atomic Co provides catalytically adjacent active sites to decompose Li2CO3. The adjacent Co/GO exhibits a highly significant sustained discharge capacity of 17 358 mA h g?1 at 100 mA g?1 for >100 cycles. Density functional theory simulations confirm that the adjacent Co electrocatalyst possesses the best performance toward the decomposition of Li2CO3 and maintains metallic‐like nature after the adsorption of Li2CO3.  相似文献   

12.
13.
High capacity cathode materials for long‐life rechargeable lithium batteries are urgently needed. Selenium cathode has recently attracted great research attention due to its comparable volumetric capacity to but much better electrical conductivity than widely studied sulfur cathode. However, selenium cathode faces similar issues as sulfur (i.e., shuttling of polyselenides, volumetric expansion) and high performance lithium‐selenium batteries (Li–Se) have not yet been demonstrated at selenium loading >60% in the electrode. In this work, a 3D mesoporous carbon nanoparticles and graphene hierarchical architecture to storage selenium as binder‐free cathode material (Se/MCN‐RGO) for high energy and long life Li–Se batteries is presented. Such architecture not only provides the electrode with excellent electrical and ionic conductivity, but also efficiently suppresses polyselenides shuttling and accommodates volume change during charge/discharge. At selenium content of 62% in the entire cathode, the free‐standing Se/MCN‐RGO exhibits high discharge capacity of 655 mAh g?1 at 0.1 C (97% of theoretical capacity) and long cycling stability with a very small capacity decay of 0.008% per cycle over 1300 cycles at 1 C. The present report demonstrates significant progress in the development of high capacity cathode materials for long‐life Li batteries and flexible energy storage device.  相似文献   

14.
Although Li–S batteries are currently receiving great interest, due to their high energy density and the low cost of sulfur, practical applications are still inhibited by capacity fading that is caused by various undesirable processes. In this study, a new multifunctional network binder composed of chitosan and reduced graphene oxide (rGO) is introduced to enhance the capacitive performance of Li–S batteries. Chitosan is reacted with graphene oxide in aqueous solution to produce a homogenous network, which effectively enhances the redox system by entrapping lithium polysulfides, reinforces the mechanical properties, and allows electrical conductivity through the binder system. Collaborative relationship‐based chitosan–rGO network binder allows noteworthy improvement in the capacity decay of 0.016% per cycle at 1 C for 1000 cycles.  相似文献   

15.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

16.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   

17.
Holey 2D nanosheets of low‐valent Mn2O3 can be synthesized by thermally induced phase transition of exfoliated layered MnO2 nanosheets. The heat treatment of layered MnO2 nanosheets at elevated temperatures leads not only to transitions to low‐valent manganese oxides but also to the creation of surface hole in the 2D nanosheet crystallites. Despite distinct phase transitions, highly anisotropic 2D morphology of the precursor MnO2 material remains intact upon the heat treatment whereas the diameter of surface hole becomes larger with increasing heating temperature. The obtained holey 2D Mn2O3 nanosheets show promising electrocatalyst performances for oxygen evolution reaction, which are much superior to that of nonporous Mn2O3 crystal. Among the present materials, the holey Mn2O3 nanosheet calcined at 500 °C displays the best electrocatalyst functionality with markedly decreased overpotential, indicating the importance of heating condition in optimizing the electrocatalytic activity. Of prime importance is that this material shows much better catalytic activity for Li–O2 batteries than does nonporous Mn2O3, underscoring the critical role of porous 2D morphology in this functionality. This study clearly demonstrates the unique advantage of holey 2D nanosheet morphology in exploring economically feasible transition metal oxide‐based electrocatalysts and electrodes for Li–O2 batteries.  相似文献   

18.
Li–S batteries are among the most promising energy storage technologies but their commercialization faces substantial challenges, largely due to difficulties in controlling their reaction pathways under practical conditions. Here, the synthesis of strongly coupled Fe3O4 and N‐doped carbon directly in flexible carbon cloth is demonstrated, as well as their novel use for hosting sulfur with outstanding performance for Li–S batteries. It is discovered that the synergistic effects of Fe3O4 and N‐carbon bring strong adsorption toward lithium polysulfide, and ensure nearly complete conversion of short‐chain polysulfide to Li2S during discharge. The Li2S solids generated on these novel hosts are extremely reactive and can be readily charged back to S without a noticeable overpotential. The critical roles of Fe3O4 and N‐doped carbon are studied and direct correlations are established between their surface concentration/crystallinity and the Li2S4 to Li2S conversion capacity. This novel manipulation of polysulfide conversion allows to fabricate freestanding and flexible sulfur cathodes that deliver a specific capacity of 1316 mAh g?1 at 0.1C and stable cycling for 1000 cycles at 0.2C under a high sulfur loading of ≈4.7 mg cm?2.  相似文献   

19.
20.
The results obtained herein demonstrate that the oxygen electrode plays a critical role in determining the morphology and chemical composition of discharge products in Na–O2 batteries. Micrometer‐sized cubic NaO2, film‐like NaO2, and nano‐sized amorphous spherical Na2‐xO2 are characterized as the main discharge products on the surface of reduced graphite oxide (rGO), boron‐doped rGO (B‐rGO), and micrometer‐sized RuO2 catalyst‐coated B‐rGO (m‐RuO2‐B‐rGO) cathodes, respectively. The Na–O2 battery with m‐RuO2‐B‐rGO as the cathode exhibits a much longer cycle life than those with the other cathodes, maintaining an unchanged capacity (0.5 mAh cm‐2) after 100 cycles at a current density of 0.05 mA cm‐2. A good rate capability and deep discharge–charge energy efficiency are also obtained. The excellent electrochemical performance of the battery is attributed to the effect of the micrometer‐sized RuO2 catalyst. Owing to the high affinity of RuO2 for oxygen, the amorphous phase Na2‐xO2 discharge product, which has good electrical contact with the RuO2 particles, can decompose completely under 3.1 V without a sudden voltage jump. Meanwhile, the micrometer‐sized RuO2 catalysts also provide enough active sites and space for the reactions, and effectively minimize the occurrence of side reactions between discharge products and carbon defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号