首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes.  相似文献   

2.
Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal‐patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low‐temperature polymer substrates. Here reports a facile ecofriendly room‐temperature metal printing paradigm using visible‐light projection lithography. With a particle‐free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m?1, ≈40% of bulk silver conductivity) after simple room‐temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 µm. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal‐patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system.  相似文献   

3.
Fibre‐based materials have received tremendous attention due to their flexibility and wearability. Although great efforts have been devoted to achieve high‐performance fibres over the past several years, it is still challenging for multifunctional macroscopic fibres to satisfy versatile applications. 2D transition metal carbides/nitrides (MXenes) with intriguing physical/chemical properties have been explored in broad application, and may be able to reinforce synthetic fibres. Inspired by natural materials, for the first time, flexible smart fibres and textiles are fabricated using a 3D printing process with hybrid inks of TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxylradi‐cal)‐mediated oxidized cellulose nanofibrils (TOCNFs) and Ti3C2 MXene. The hybrid inks display good rheological properties, which allow them to achieve accurate structures and be rapidly printed. TOCNFs/Ti3C2 in hybrid inks self‐assemble to fibres with an aligned structure in ethanol, mimicking the features of the natural structures of plant fibres. In contrast to conventional synthetic fibres with limited functions, smart TOCNFs/Ti3C2 fibres and textiles exhibit significant responsiveness to multiple external stimuli (electrical/photonic/mechanical). TOCNFs/Ti3C2 textiles with electromechanical performance can be processed into sensitive strain sensors. Such multifunctional smart fibres and textiles will be promising in diverse applications, including wearable heating textiles, human health monitoring, and human–machine interfaces.  相似文献   

4.
3D printing is a rapidly growing field that requires the development of yield‐stress fluids that can be used in postprinting transformation processes. There is a limited number of yield‐stress fluids currently available with the desired rheological properties for building structures with small filaments (≤l00 µm) with high shape‐retention. A printing‐centric approach for 3D printing particle‐free silicone oil‐in‐water emulsions with a polymer additive, poly(ethylene oxide) is presented. This particular material structure and formulation is used to build 3D structure and to pattern at filament diameters below that of any other known material in this class. Increasing the molecular weight of poly(ethylene oxide) drastically increases the extensibility of the material without significantly affecting shear flow properties (shear yield stress and linear viscoelastic moduli). Higher extensibility of the emulsion correlates to the ability of filaments to span relatively large gaps (greater than 6 mm) when extruded at large tip diameters (330 µm) and the ability to extrude filaments at high print rates (20 mm s?1). 3D printed structures with these extensible particle‐free emulsions undergo postprinting transformation, which converts them into elastomers. These elastomers can buckle and recover from extreme compressive strain with no permanent deformation, a characteristic not native to the emulsion.  相似文献   

5.
A new strategy to achieve large‐scale, three‐dimensional (3D) micro‐ and nanostructured surface patterns through selective electrochemical growth on monolayer colloidal crystal (MCC) templates is reported. This method can effectively create large‐area (>1 cm2), 3D surface patterns with well‐defined structures in a cost‐effective and time‐saving manner (<30 min). A variety of 3D surface patterns, including semishells, Janus particles, microcups, and mushroom‐like clusters, is generated. Most importantly, our method can be used to prepare surface patterns with prescribed compositions, such as metals, metal oxides, organic materials, or composites (e.g., metal/metal oxide, metal/polymer). The 3D surface patterns produced by our method can be valuable in a wide range of applications, such as biosensing, data storage, and plasmonics. In a proof‐of‐concept study, we investigated, both experimentally and theoretically, the surface‐enhanced Raman scattering (SERS) performance of the fabricated silver 3D semishell arrays.  相似文献   

6.
Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators.  相似文献   

7.
Additive patterning of transparent conducting metal oxides at low temperatures is a critical step in realizing low‐cost transparent electronics for display technology and photovoltaics. In this work, inkjet‐printed metal oxide transistors based on pure aqueous chemistries are presented. These inks readily convert to functional thin films at lower processing temperatures (T ≤ 250 °C) relative to organic solvent‐based oxide inks, facilitating the fabrication of high‐performance transistors with both inkjet‐printed transparent electrodes of aluminum‐doped cadmium oxide (ACO) and semiconductor (InOx ). The intrinsic fluid properties of these water‐based solutions enable the printing of fine features with coffee‐ring free line profiles and smoother line edges than those formed from organic solvent‐based inks. The influence of low‐temperature annealing on the optical, electrical, and crystallographic properties of the ACO electrodes is investigated, as well as the role of aluminum doping in improving these properties. Finally, the all‐aqueous‐printed thin film transistors (TFTs) with inkjet‐patterned semiconductor (InOx ) and source/drain (ACO) layers are characterized, which show ideal low contact resistance (R c < 160 Ω cm) and competitive transistor performance (µ lin up to 19 cm2 V?1 s?1, Subthreshold Slope (SS) ≤150 mV dec?1) with only low‐temperature processing (T ≤ 250 °C).  相似文献   

8.
Conventional bulky and rigid power systems are incapable of meeting flexibility and breathability requirements for wearable applications. Despite the tremendous efforts dedicated to developing various 1D energy storage devices with sufficient flexibility, challenges remain pertaining to fabrication scalability, cost, and efficiency. Here, a scalable, low‐cost, and high‐efficiency 3D printing technology is applied to fabricate a flexible all‐fiber lithium‐ion battery (LIB). Highly viscous polymer inks containing carbon nanotubes and either lithium iron phosphate (LFP) or lithium titanium oxide (LTO) are used to print LFP fiber cathodes and LTO fiber anodes, respectively. Both fiber electrodes demonstrate good flexibility and high electrochemical performance in half‐cell configurations. All‐fiber LIB can be successfully assembled by twisting the as‐printed LFP and LTO fibers together with gel polymer as the quasi‐solid electrolyte. The all‐fiber device exhibits a high specific capacity of ≈110 mAh g?1 at a current density of 50 mA g?1 and maintains a good flexibility of the fiber electrodes, which can be potentially integrated into textile fabrics for future wearable electronic applications.  相似文献   

9.
The prevalence of the Internet of Things (IoT) and wearable electronics create an unprecedented demand for new power sources which are low cost, high performance, and flexible in many application settings. In this paper, a strategy for the scalable fabrication of high‐performance, all‐solid‐state supercapacitors (SCs) is demonstrated using conventional paper and an inkjet printer. Emerging printed electronics technology and low‐cost chemical engraving methods are bridged for the first time to construct CuxO nanosheets, in situ, on the 3D metallized fiber structures. Benefitting from both the “2D Materials on 3D Structures” design and the binder‐free nature of the fabricated electrodes, substantial improvements to electrical conductivity, aerial capacitance, and electrochemical performance of the resulting SCs are observed. With the proposed strategy, the fabricated SCs can be seamlessly integrated into any printed circuit, sensors, or artwork; the properties of these SCs can be easily tuned by simple pattern design, fulfilling the increasing demand of highly customized power systems in the IoT and flexible/wearable electronics industries.  相似文献   

10.
Direct‐ink writing (DIW), a rapidly growing and advancing form of additive manufacturing, provides capacities for on‐demand tailoring of materials to meet specific requirements for final designs. The penultimate challenge faced with the increasing demand of customization is to extend beyond modification of shape to create 4D structures, dynamic 3D structures that can respond to stimuli in the local environment. Patterning material gradients is foundational for assembly of 4D structures, however, there remains a general need for useful materials chemistries to generate gray scale gradients via DIW. Here, presented is a simple materials assembly paradigm using DIW to pattern ionotropic gradients in hydrogels. Using structures that architecturally mimic sea‐jelly organisms, the capabilities of spatial patterning are highlighted as exemplified by selectively programming the valency of the ion‐binding agents. Spatial gradients, when combined with geometry, allow for programming the flexibility and movement of iron oxide nanoparticle–loaded ionotropic hydrogels to generate 4D‐printed structures that actuate in the presence of local magnetic fields. This work highlights approaches to 4D design complexity that exploits 3D‐printed gray‐scale/gradient mechanics.  相似文献   

11.
In recent years, bulk metallic glasses (BMGs) have drawn much research attention and are shown to be of industrial interest due to their superior mechanical properties and resistance to corrosion. In spite of the interest in harnessing MG for microelectromechanical systems devices, there are limitations in manufacturing such micrometer‐scale structures. A novel approach for the fabrication of 3D MG structures using laser‐induced forward transfer (LIFT) is demonstrated. Inherent tremendous cooling rates associated with the metal LIFT process (≈1010 k s?1) make the formation of a variety of BMGs accessible, including also various binary compositions. In this work, it is demonstrated that LIFT printing of ZrPd‐based metallic glass microstructures can also be performed under ambient conditions. X‐ray diffraction analysis of the printed structures reveals > 95% of amorphous metal phase. Taking advantage of the properties of BMG, high quality printing of high aspect ratio BMG pillars, and microbridges are demonstrated. It is also shown how a composite, amorphous‐crystalline metal structure with a required configuration can be fabricated using multimaterial LIFT printing. The inherent high resolution of the method combined with the noncontact and multimaterial printing capacity makes LIFT a valuable additive manufacturing technique to produce metallic glass‐based devices.  相似文献   

12.
Cellulose is an attractive material resource for the fabrication of sustainable functional products, but its processing into structures with complex architecture and high cellulose content remains challenging. Such limitation has prevented cellulose‐based synthetic materials from reaching the level of structural control and mechanical properties observed in their biological counterparts, such as wood and plant tissues. To address this issue, a simple approach is reported to manufacture complex‐shaped cellulose‐based composites, in which the shaping capabilities of 3D printing technologies are combined with a wet densification process that increases the concentration of cellulose in the final printed material. Densification is achieved by exchanging the liquid of the wet printed material with a poor solvent mixture that induces attractive interactions between cellulose particles. The effect of the solvent mixture on the final cellulose concentration is rationalized using solubility parameters that quantify the attractive interparticle interactions. Using X‐ray diffraction analysis and mechanical tests, 3D printed composites obtained through this process are shown to exhibit highly aligned microstructures and mechanical properties significantly higher than those obtained by earlier additively manufactured cellulose‐based materials. These features enable the fabrication of cellulose‐rich synthetic structures that more closely resemble the exquisite designs found in biological materials grown by plants in nature.  相似文献   

13.
Over the next few years, it is expected that new, energetic, multifunctional materials will be engineered. There is a need for new methods to assemble such materials from manufactured nanopowders. In this article, we demonstrate a DNA‐directed assembly procedure to produce highly energetic nanocomposites by assembling Al and CuO nanoparticles into micrometer‐sized particles of an Al/CuO nanocomposite, which has exquisite energetic performance in comparison with its physically mixed Al/CuO counterparts. Using 80 nm Al nanoparticles, the heat of reaction and the onset temperature are 1.8 kJ g?1 and 410 °C, respectively. This experimental achievement relies on the development of simple and reliable protocols to disperse and sort metallic and metal oxide nanopowders in aqueous solution and the establishment of specific DNA surface‐modification processes for Al and CuO nanoparticles. Overall, our work, which shows that DNA can be used as a structural material to assemble Al/Al, CuO/CuO and Al/CuO composite materials, opens a route for molecular engineering of the material on the nanoscale.  相似文献   

14.
2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm?1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm?1) and reduced graphene oxide (340 S cm?1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.  相似文献   

15.
Additive manufacturing strives to combine any combination of materials into 3D functional structures and devices, ultimately opening up the possibility of 3D printed machines. It remains difficult to actuate such devices, thus limiting the scope of 3D printed machines to passive devices or necessitating the incorporation of external actuators that are manufactured differently. Here, 3D printed hybrid thermoplast/conducter bilayers are explored, which can be actuated by differential heating caused by externally controllable currents flowing through their conducting faces. The functionality of such actuators is uncovered and it is shown that they allow to 3D print, in one pass, simple flexible robotic structures that propel forward under step‐wise applied voltages. Moreover, exploiting the thermoplasticity of the nonconducting plastic parts at elevated temperatures, it is shown that how strong driving leads to irreversible deformations—a form of 4D printing—which also enlarges the range of linear response of the actuators. Finally, it is shown that how to leverage such thermoplastic relaxations to accumulate plastic deformations and obtain very large deformations by alternatively driving both layers of a bilayer; this is called ratcheting. The strategy is scalable and widely applicable, and opens up a new approach to reversible actuation and irreversible 4D printing of arbitrary structures and machines.  相似文献   

16.
Direct ink writing (DIW) provides programmable and customizable platforms to engineer hierarchically organized constructs. However, one‐step, facile synthesis of such architectures via DIW has been challenging. This study introduces inks based on two‐phase emulgels for direct printing and in situ formation of protecting layers enveloping multicomponent cores, mimicking skin‐bearing biological systems. The emulgel consists of a Pickering emulsion with an organic, internal phase containing poly(lactic acid) stabilized by chitin/cellulose nanofibers and a continuous, cross‐linkable hydrogel containing cellulose nanofibers and any of the given solid particles. The shear during ink extrusion through nozzles of low surface energy facilitates the generation of the enveloped structures via fast and spontaneous phase separation of the emulgel. The skin‐bearing architectures enable control of mass transport as a novel configuration for cargo release. As a demonstration, a hydrophilic molecule is loaded in the hydrogel, which is released through the core and skin, enabling regulation of diffusion and permeation phenomena. This 3D‐printed functional material allows independent control of strength owing to the hierarchical construction. The new method of fabrication is proposed as a simple way to achieve protection, regulation, and sensation, taking the example of the functions of skins and cuticles, which are ubiquitous in nature.  相似文献   

17.
Printing has drawn a lot of attention as a means of low per‐unit cost and high throughput patterning of graphene inks for scaled‐up thin‐form factor device manufacturing. However, traditional printing processes require a flat surface and are incapable of achieving patterning onto 3D objects. Here, a conformal printing method is presented to achieve functional graphene‐based patterns onto arbitrarily shaped surfaces. Using experimental design, a water‐insoluble graphene ink with optimum conductivity is formulated. Then single‐ and multilayered electrically functional structures are printed onto a sacrificial layer using conventional screen printing. The print is then floated on water, allowing the dissolution of the sacrificial layer, while retaining the functional patterns. The single‐ and multilayer patterns can then be directly transferred onto arbitrarily shaped 3D objects without requiring any postdeposition processing. Using this technique, conformal printing of single‐ and multilayer functional devices that include joule heaters, resistive deformation sensors, and proximity sensors on hard, flexible, and soft substrates, such as glass, latex, thermoplastics, textiles, and even candies and marshmallows, is demonstrated. This simple strategy promises to add new device and sensing functionalities to previously inert 3D surfaces.  相似文献   

18.
This work demonstrates a means of automatic transformation from planar electronic devices to desirable 3D forms. The method uses a spatially designed thermoplastic framework created via extrusion shear printing of acrylonitrile–butadiene–styrene (ABS) on a stress‐free ABS film, which can be laminated to a membrane‐type electronic device layer. Thermal annealing above the glass transition temperature allows stress relaxation in the printed polymer chains, resulting in an overall shape transformation of the framework. In addition, the significant reduction in the Young's modulus and the ability of the polymer chains to reflow in the rubbery state release the stress concentration in the electronic device layer, which can be positioned outside the neutral mechanical plane. Electrical analyses and mechanical simulations of a membrane‐type Au electrode and indium gallium zinc oxide transistor arrays before and after transformation confirm the versatility of this method for developing 3D electronic devices based on planar forms.  相似文献   

19.
3D‐printing represents an emerging technology that can revolutionize the way object and functional devices are fabricated. Here the use of metal 3D printing is demonstrated to fabricate bespoke electrochemical stainless steel electrodes that can be used as platform for different electrochemical applications ranging from electrochemical capacitors, oxygen evolution catalyst, and pH sensor by means of an effective and controlled deposition of IrO2 films. The electrodes have been characterized by scanning electrode microscopy and energy dispersive X‐ray spectroscopy before the electrochemical testing. Excellent pseudocapacitive as well as catalytic properties have been achieved with these 3D printed steel‐IrO2 electrodes in alkaline solutions. These electrodes also demonstrate Nernstian behavior as pH sensor. This work represents a breakthrough in on‐site prototyping and fabrication of highly tailored electrochemical devices with complex 3D shapes which facilitate specific functions and properties.  相似文献   

20.
Europium and terbium trisdipicolinate complexes are inkjet printed onto paper with commercially available desktop inkjet printers. Together with a commercial blue luminescent ink, the red‐emitting luminescent ink containing europium and the green‐emitting luminescent ink containing terbium are used to reproduce accurate full color images that are invisible under white light and appear under a 254 nm UV light. Such invisible luminescent images are attractive anti‐counterfeiting security features. The luminescent prints have a color range (gamut) nearly as wide as the gamut of a standard sRGB display. The gamut of the luminescent prints is determined by relying on a simple model predicting the relative spectral radiant emittances of any printed luminescent color halftone. The model is also used to establish the correspondence between the surface coverages of the printed luminescent inks and the emitted color of these luminescent halftones. The accuracy of the spectral prediction model is very good and can be rationalized by the absence of quenching when the luminescent lanthanide complexes are printed in superposition with the other luminescent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号