首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical water splitting is very attractive for green fuel energy production, but the development of active, stable, and earth‐abundant catalysts for the hydrogen evolution reaction (HER) remains a major challenge. Here, core–shell nanostructured architectures are used to design and fabricate efficient and stable HER catalysts from earth‐abundant components. Vertically oriented quasi‐2D core–shell MoO2/MoSe2 nanosheet arrays are grown onto insulating (SiO2/Si wafer) or conductive (carbon cloth) substrates. This core–shell nanostructure array architecture exhibits synergistic properties to create superior HER performance, where high density structural defects and disorders on the shell generated by a large crystalline mismatch of MoO2 and MoSe2 act as multiple active sites for HER, and the metallic MoO2 core facilitates charge transport for proton reduction while the vertical nanosheet arrays ensure fully exposed active sites toward electrolytes. As a HER catalyst, this electrode exhibits a low Tafel slope of 49.1 mV dec?1, a small onset potential of 63 mV, and an ultralow charge transfer resistance (Rct) of 16.6 Ω at an overpotential of 300 mV with a long cycling durability for up to 8 h. This work suggests that a quasi 2D core–shell nanostructure combined with a vertical array microstructure is a promising strategy for efficient water splitting electrocatalysts with scale‐up potential.  相似文献   

2.
Metal–organic frameworks (MOFs) and MOF‐derived nanostructures are recently emerging as promising catalysts for electrocatalysis applications. Herein, 2D MOFs nanosheets decorated with Fe‐MOF nanoparticles are synthesized and evaluated as the catalysts for water oxidation catalysis in alkaline medium. A dramatic enhancement of the catalytic activity is demonstrated by introduction of electrochemically inert Fe‐MOF nanoparticles onto active 2D MOFs nanosheets. In the case of active Ni‐MOF nanosheets (Ni‐MOF@Fe‐MOF), the overpotential is 265 mV to reach a current density of 10 mA cm?2 in 1 m KOH, which is lowered by ≈100 mV after hybridization due to the 2D nanosheet morphology and the synergistic effect between Ni active centers and Fe species. Similar performance improvement is also successfully demonstrated in the active NiCo‐MOF nanosheets. More importantly, the real catalytic active species in the hybrid Ni‐MOF@Fe‐MOF catalyst are unraveled. It is found that, NiO nanograins (≈5 nm) are formed in situ during oxygen evolution reaction (OER) process and act as OER active centers as well as building blocks of the porous nanosheet catalysts. These findings provide new insights into understanding MOF‐based catalysts for water oxidation catalysis, and also shed light on designing highly efficient MOF‐derived nanostructures for electrocatalysis.  相似文献   

3.
Replacement of noble‐metal platinum catalysts with cheaper, operationally stable, and highly efficient electrocatalysts holds huge potential for large‐scale implementation of clean energy devices. Metal–organic frameworks (MOFs) and metal dichalcogenides (MDs) offer rich platforms for design of highly active electrocatalysts owing to their flexibility, ultrahigh surface area, hierarchical pore structures, and high catalytic activity. Herein, an advanced electrocatalyst based on a vertically aligned MoS2 nanosheet encapsulated Mo–N/C framework with interfacial Mo–N coupling centers is reported. The hybrid structure exhibits robust multifunctional electrocatalytic activity and stability toward the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Interestingly, it further displays high‐performance of Zn–air batteries as a cathode electrocatalyst with a high power density of ≈196.4 mW cm?2 and a voltaic efficiency of ≈63 % at 5 mA cm?2, as well as excellent cycling stability even after 48 h at 25 mA cm?2. Such outstanding electrocatalytic properties stem from the synergistic effect of the distinct chemical composition, the unique three‐phase active sites, and the hierarchical pore framework for fast mass transport. This work is expected to inspire the design of advanced and performance‐oriented MOF/MD hybrid‐based electrocatalysts for wider application in electrochemical energy devices.  相似文献   

4.
Solution‐processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n‐type electrolyte‐gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. The WS2 nanosheets are liquid phase exfoliated to form aqueous/surfactant stabilized inks, and deposited at low temperatures (T < 120 °C) in ambient atmosphere by airbrushing. No solvent exchange, further additives, or complicated processing steps are required. While the EGTs are primarily n‐type (electron accumulation), some hole transport is also observable. The EGTs show current modulations > 104 with low hysteresis, channel width‐normalized on‐conductances of up to 0.27 µS µm?1 and estimated electron mobilities around 0.01 cm2 V?1 s?1. In addition, the WS2 nanosheet networks exhibit relatively high volumetric capacitance values of 30 F cm?3. Charge transport within the network depends significantly on the applied lateral electric field and is thermally activated, which supports the notion that hopping between nanosheets is a major limiting factor for these networks and their future application.  相似文献   

5.
Making highly efficient catalysts for an overall ?water splitting reaction is vitally important to bring solar/electrical‐to‐hydrogen energy conversion processes into reality. Herein, the synthesis of ultrathin nanosheet‐based, hollow MoOx/Ni3S2 composite microsphere catalysts on nickel foam, using ammonium molybdate as a precursor and the triblock copolymer pluronic P123 as a structure‐directing agent is reported. It is also shown that the resulting materials can serve as bifunctional, non‐noble metal electrocatalysts with high activity and stability for the hydrogen evolution reaction (HER) as well as the oxygen evolution reaction (OER). Thanks to their unique structural features, the materials give an impressive water‐splitting current density of 10 mA cm?2 at ≈1.45 V with remarkable durability for >100 h when used as catalysts both at the cathode and the anode sides of an alkaline electrolyzer. This performance for an overall water splitting reaction is better than even those obtained with an electrolyzer consisting of noble metal‐based Pt/C and IrOx/C catalytic couple—the benchmark catalysts for HER and OER, respectively.  相似文献   

6.
While liquid phase exfoliation can be used to produce nanosheets stabilized in polymer solutions, very little is known about the resultant nanosheet size, thickness, or monolayer content. The present study uses semiquantitative spectroscopic metrics based on extinction, Raman, and photoluminescence (PL) spectroscopy to investigate these parameters for WS2 nanosheets exfoliated in aqueous poly(vinyl alcohol) (PVA) solutions. By measuring Raman and PL simultaneously, the monolayer content can be tracked via the PL/Raman intensity ratio while varying processing conditions. The PL is found to be maximized for a stabilizing polymer concentration of 2 g L?1. In addition, the monolayer content can be controlled via the centrifugation conditions, exceeding 5% by mass in some cases. These techniques have allowed tracking the ratio of PL/Raman in a droplet of polymer‐stabilized WS2 nanosheets as the water evaporates during composite formation. No evidence of nanosheet aggregation is found under these conditions although the PL becomes dominated by trion emission as drying proceeds and the balance of doping from PVA/water changes. Finally, bulk PVA/WS2 composites are produced by freeze drying where >50% of the monolayers remain unaggregated, even at WS2 volume fractions as high as 10%.  相似文献   

7.
The exploring of catalysts with high‐efficiency and low‐cost for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the key issues for many renewable energy systems including fuel cells, metal–air batteries, and water splitting. Despite several decades pursuing, bifunctional oxygen catalysts with high catalytic performance at low‐cost, especially the one that could be easily scaled up for mass production are still missing and highly desired. Herein, a hybrid catalyst with NiCo alloy nanoparticles decorated on N‐doped carbon nanofibers is synthesized by a facile electrospinning method and postcalcination treatment. The hybrid catalyst NiCo@N‐C 2 exhibits outstanding ORR and OER catalytic performances, which is even surprisingly superior to the commercial Pt/C and RuO2 catalysts, respectively. The synergetic effects between alloy nanoparticles and the N‐doped carbon fiber are considered as the main contributions for the excellent catalytic activities, which include decreasing the intrinsic and charge transfer resistances, increasing C?C, graphitic‐N/pyridinic‐N contents in the hybrid catalyst. This work opens up a new way to fabricate high‐efficient, low‐cost oxygen catalysts with high production.  相似文献   

8.
The hydrogen evolution reaction in an alkaline environment using a non‐precious catalyst with much greater efficiency represents a critical challenge in research. Here, a robust and highly active system for hydrogen evolution reaction in alkaline solution is reported by developing MoS2 nanosheet arrays vertically aligned on graphene‐mediated 3D Ni networks. The catalytic activity of the 3D MoS2 nanostructures is found to increase by 2 orders of magnitude as compared to the Ni networks without MoS2. The MoS2 nanosheets vertically grow on the surface of graphene by employing tetrakis(diethylaminodithiocarbomato)molybdate(IV) as the molybdenum and sulfur source in a chemical vapor deposition process. The few‐layer MoS2 nanosheets on 3D graphene/nickel structure can maximize the exposure of their edge sites at the atomic scale and present a superior catalysis activity for hydrogen production. In addition, the backbone structure facilitates as an excellent electrode for charge transport. This precious‐metal‐free and highly efficient active system enables prospective opportunities for using alkaline solution in industrial applications.  相似文献   

9.
Hydrogen evolution electrocatalysts can achieve sustainable hydrogen production via electrocatalytic water splitting; however, designing highly active and stable noble‐metal‐free hydrogen evolution electrocatalysts that perform as efficiently as Pt catalysts over a wide pH range is a challenging task. Herein, a new 2D cobalt phosphide/nickelcobalt phosphide (CoP/NiCoP) hybrid nanosheet network is proposed, supported on an N‐doped carbon (NC) matrix as a highly efficient and durable pH‐universal hydrogen evolution reaction (HER) electrocatalyst. It is derived from topological transformation of corresponding layer double hydroxides and graphitic carbon nitride. This 2D CoP/NiCoP/NC catalyst exhibits versatile HER electroactivity with very low overpotentials of 75, 60, and 123 mV in 1 m KOH, 0.5 m H2SO4, and 1 m PBS electrolytes, respectively, delivering a current density of 10 mA cm?2 for HER. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of electronic structure engineering, strong interfacial coupling between CoP and NiCoP in heterojunction, an enlarged surface area/exposed catalytic active sites due to the 2D morphology, and conductive NC support. This method is believed to provide a basis for the development of efficient 2D electrode materials with various electrochemical applications.  相似文献   

10.
Searching the high‐efficient, stable, and earth‐abundant electrocatalysts to replace the precious noble metals holds the promise for practical utilizations of hydrogen and oxygen evolution reactions (HER and OER). Here, a series of highly active and robust Co‐doped nickel phosphides (Ni2?xCoxP) catalysts and their hybrids with reduced graphene oxide (rGO) are developed as bifunctional catalysts for both HER and OER. The Co‐doping in Ni2P and their hybridization with rGO effectively regulate the catalytic activity of the surface active sites, accelerate the charge transfer, and boost their superior catalytic activity. Density functional theory calculations show that the Co‐doped catalysts deliver the moderate trapping of atomic hydrogen and facile desorption of the generated H2 due to the H‐poisoned surface active sites of Ni2?xCoxP under the real catalytic process. Electrochemical measurements reveal the high HER efficiency and durability of the NiCoP/rGO hybrids in electrolytes with pH 0–14. Coupled with the remarkable and robust OER activity of the NiCoP/rGO hybrids, the practical utilization of the NiCoP/rGO‖NiCoP/rGO for overall water splitting yields a catalytic current density of 10 mA cm?2 at 1.59 V over 75 h without an obvious degradation and Faradic efficiency of ≈100% in a two‐electrode configuration and 1.0 m KOH.  相似文献   

11.
A 3D hierarchical porous catalyst architecture based on earth abundant metals Ni, Fe, and Co has been fabricated through a facile hydrothermal and electrodeposition method for efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrode is comprised of three levels of porous structures including the bottom supermacroporous Ni foam (≈500 μm) substrate, the intermediate layer of vertically aligned macroporous NiCo2O4 nanoflakes (≈500 nm), and the topmost NiFe(oxy)hydroxide mesoporous nanosheets (≈5 nm). This hierarchical architecture is binder‐free and beneficial for exposing catalytic active sites, enhancing mass transport and accelerating dissipation of gases generated during water electrolysis. Serving as an anode catalyst, the designed hierarchical electrode displays excellent OER catalytic activity with an overpotential of 340 mV to achieve a high current density of 1200 mA cm?2. Serving as a cathode catalyst, the catalyst exhibits excellent performance toward HER with a moderate overpotential of 105 mV to deliver a current density of 10 mA cm?2. Serving as both anode and cathode catalysts in a two‐electrode water electrolysis system, the designed electrode only requires a potential of 1.67 V to deliver a current density of 10 mA cm?2 and exhibits excellent durability in prolonged bulk alkaline water electrolysis.  相似文献   

12.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

13.
Metallic glass (MG), with the superiorities of unique disordered atomic structure and intrinsic chemical heterogeneity, is a new promising and competitive member in the family of environmental catalysts. However, what is at stake for MG catalysts is that their high catalytic efficiency is always accompanied by low stability and the disordered atomic configurations, as well as the structural evolution, related to catalytic performance, which raises a primary obstacle for their widespread applications. Herein, a non‐noble and multicomponent Fe83Si2B11P3C1 MG catalyst that presents a fascinating catalytic efficiency while maintaining remarkable stability for wastewater remediation is developed. Results indicate that the excellent efficiency of the MG catalysts is ascribed to a unique atomic coordination that causes an electronic delocalization with an enhanced electron transfer. More importantly, the in situ self‐reconstructed hierarchical gradient structure, which comprises a top porous sponge layer and a thin amorphous oxide interfacial layer encapsulating the MG surface, provides matrix protection together with high permeability and more active sites. This work uncovers a new strategy for designing high‐performance non‐noble metallic catalysts with respect to structural evolution and alteration of electronic properties, establishing a solid foundation in widespread catalytic applications.  相似文献   

14.
Designing high-performance and cost-effective electrocatalysts for water splitting at high current density is pivotal for practical industrial applications. Herein, it is found that atomic-level surface engineering of self-supported nickel phosphide (NiP) nanoarrays via a facile cation-exchange method can substantially regulate the chemical and physical properties of catalysts by introducing Co atoms. Such surface-engineered NixCo1–xP endows several aspects of merits: i) rough nanosheet array electrode structure accessible to diffusion of electrolytes and release of gas bubbles, ii) enriched P vacancies companied by Co doping and thus increased active sites, and iii) the synergy of Ni5P4 and NiP2 beneficial to catalytic activity enhancement. By virtue of finely controlling the Co contents, the optimal Ni0.96Co0.04P electrode achieves remarkable bifunctional electrocatalytic performance for overall water splitting at a large current density of 1000 mA cm−2, showing overpotentials of 249.7 mV for hydrogen evolution reaction and 281.7 mV for oxygen evolution reaction. Furthermore, the Ni0.96Co0.04P electrode at 500 mA cm−2 exhibits an ultralow potential (1.71 V) and ultralong durability (500 h) for overall water splitting. This study implies that the atomic-level surface engineering of the electrode materials offers a viable route for gaining high-performance catalysts for water splitting at large current density.  相似文献   

15.
Nanomaterial/DNA integrated systems have become an emerging tool for intracellular imaging. However, intracellular catalytic DNA circuit is rarely explored. Commonly used nanosystems neglect intracellular DNA assembly, conformation folding and catalytic efficiency, all demanding appropriate metal ion conditions. Herein, MnO2 nanosheet/DNAzyme (nanozyme) is fabricated as intracellular catalytic DNA circuit generator for high signal amplification, and its operation is reported for monitoring DNA base‐excision repair (BER) in living cells with improved performance. MnO2 nanosheet works as not only DNA nanocarrier but also as DNAzyme cofactor supplier. The nanozyme is constructed by adsorbing DNA probes on MnO2 nanosheets, facilitating cellular uptake of DNA. They are rapidly released in cellular environments by reducing MnO2 nanosheets to Mn2+ as DNAzyme cofactor. After repair enzyme activation, nanozymes are properly assembled with active folded conformation and hold sustained catalytic efficiency over many cycles. It offers at least 40‐fold amplified signals for the monitoring of apurinic/apyrimidinic endonuclease‐initiated and DNA glycosylase‐initiated BER pathways. Multiplex imaging can be allowed by integrating several sets of probes with per MnO2 nanosheet. The MnO2 nanozyme opens up exciting opportunities for imaging low‐abundance biomarkers and relevant biological pathways in living cells.  相似文献   

16.
Engineering non‐noble metal–based electrocatalysts with superior water oxidation performance is highly desirable for the production of renewable chemical fuels. Here, an atomically thin low‐crystallinity Fe–Mn–O hybrid nanosheet grown on carbon cloth (Fe–Mn–O NS/CC) is successfully synthetized as an efficient oxygen evolution reaction (OER) catalyst. The synthesis strategy involves a facile reflux reaction and subsequent low‐temperature calcination process, and the morphology and composition of hybrid nanosheets can be tailored conveniently. The defect‐rich Fe–Mn–O ultrathin nanosheet with uniform element distribution enables exposure of more catalytic active sites; moreover, the atomic‐scale synergistic action of Mn and Fe oxide contributes to an enhanced intrinsic catalytic activity. Therefore, the optimized Fe–Mn–O hybrid nanosheets, with lateral sizes of about 100–600 nm and ≈1.4 nm in thickness, enable a low onset potential of 1.46 V, low overpotential of 273 mV for current density of 10 mA cm?2, a small Tafel slope of 63.9 mV dec?1, and superior durability, which are superior to that of individual MnO2 and FeOOH electrode, and even outperforming most reported MnO2‐based electrocatalysts.  相似文献   

17.
Metallic 1T‐phase transition metal dichalcogenides have been recognized for their desirable properties like high surface‐to‐volume ratio, high conductivity, and capacitive behavior, making them outstanding for catalytic and sensing applications. Herein, a hydrogen peroxide (H2O2) biosensor is constructed by the immobilization of hemoglobin (Hb) on 1T‐phase WS2 (1T‐WS2) sheets, and entrapment by glutaraldehyde. 1T‐WS2 not only displays electrocatalytic activity toward the reduction of H2O2 but also provides a high surface‐to‐volume ratio and conductive platform for the immobilization of Hb and facilitation of its electron transfer to the electrode surface. The advantageous role of 1T‐phase WS2 is further demonstrated for the construction of a heme‐based H2O2 biosensor compared to its 1T‐phase MoS2, MoSe2, and WSe2 counterparts. Synergistic interactions between 1T‐WS2 and Hb result in a H2O2 biosensor with high analytical performance in terms of wide range, sensitivity, selectivity, reproducibility, repeatability, and stability. These findings have profound impact in the research fields of electrochemical sensing and biodiagnostics.  相似文献   

18.
Dehydrogenation of formic acid (FA) is a promising alternative to fossil fuels, to provide clean energy for the future energy economy. The synthesis of highly active catalysts for FA dehydrogenation at room temperature has attracted a lot of attention. Herein, for the first time, highly active aurum–palladium nanoparticles (AuPd NPs) immobilized on nitrogen (N)‐doped porous carbon are fabricated through a phosphate‐mediation approach. The N‐doped carbon anchored with phosphate, which can be removed in alkaline solution during the reduction process of metal ions, shows an enhanced performance of absorbing and dispersion of both Au and Pd ions, which is a key to the synthesis of highly dispersed ultrafine AuPd NPs. The as‐prepared catalyst (designated as Au2Pd3@(P)N‐C) exhibits an extraordinarily high turnover frequency of 5400 h?1 and a 100% H2 selectivity for FA dehydrogenation at 30 °C. This phosphate‐mediation approach provides a new way to fabricate highly active metal NPs for catalytic application, pushing heterogeneous catalysts forward for practical usage in energy storage and conversion.  相似文献   

19.
A synthetic route toward hybrid MoS2‐based materials that combines the 2D bonding of MoS2 with 3D networking of aliphatic carbon chains is devised, leading to a film with enhanced electrocatalytic activity. The hybrid inorganic–organic thin films are synthesized by combining atomic layer deposition (ALD) with molecular layer deposition (MLD) using the precursors molybdenum hexacarbonyl and 1,2‐ethanedithiol and characterized by in situ Fourier transform infrared spectroscopy, and the resultant material properties are probed by X‐ray photoelectron spectroscopy, Raman spectroscopy, and grazing incidence X‐ray diffraction. The process exhibits a growth rate of 1.3 Å per cycle, with an ALD/MLD temperature window of 155–175 °C. The hybrid films are moderately stable for about a week in ambient conditions, smooth (σRMS ≈ 5 Å for films 60 Å thick) and uniform, with densities ranging from 2.2–2.5 g cm?3. The material is both optically transparent and catalytically active for the hydrogen evolution reaction (HER), with an overpotential (294 mV at ?10 mA cm?2) superior to that of planar MoS2. The enhancement in catalytic activity is attributed to the incorporation of organic chains into MoS2, which induces a morphological change during electrochemical testing that increases surface area and yields high activity HER catalysts without the need for deliberate nanostructuring.  相似文献   

20.
Oxygen evolution from water is one of the key reactions for solar fuel production. Here, two nanostructured K‐containing δ‐MnO2 are synthesized: K‐δ‐MnO2 nanosheets and K‐δ‐MnO2 nanoparticles, both of which exhibit high catalytic activity in visible‐light‐driven water oxidation. The role of alkaline cations in oxygen evolution is first explored by replacing the K+ ions in the δ‐MnO2 structure with H+ ions through proton ion exchange. H‐δ‐MnO2 catalysts with a similar morphology and crystal structure exhibit activities per surface site approximately one order of magnitude lower than that of K‐δ‐MnO2, although both nanostructured H‐δ‐MnO2 catalysts have much larger Brunauer–Emmett–Teller (BET) surface areas. Such a low turnover frequency (TOF) per surface Mn atom might be due to the fact that the Ru2+(bpy)3 sensitizer is too large to access the additional surface area created during proton exchange. Also, a prepared Na‐containing δ‐MnO2 material with an identical crystal structure exhibits a TOF similar to that of the K‐containing δ‐MnO2, suggesting that the alkaline cations are not directly involved in catalytic water oxidation, but instead stabilize the layered structure of the δ‐MnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号