首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Building nanocomposite architectures based on nanocarbon materials (such as carbon nanotubes and graphene nanosheets) and metal‐oxide nanoparticles is of great interests for electrochemical energy storage. Here, an ionic‐liquid‐assisted strategy is presented to mediate the in situ growth of TiO2 nanocrystals with controlled size on carbon nanotubes and graphene, and also reduce the modified carbon supports to recover the graphitic structure simultaneously. The as‐prepared nanocomposites exhibit a highly porous and robust structure with intimate coupling between TiO2 nanocrystals and carbon supports, which offers facile ion and electron transport pathway as well as high mechanical stability. When evaluated as electrode materials for lithium‐ion batteries, the nanocomposites manifest high specific capacity, long cycling lifetime, and excellent rate capability, showing their promising application in high‐performance energy storage devices.  相似文献   

2.
3.
Dark‐colored rutile TiO2 nanorods doped by electroconducting Ti3+ have been obtained uniformly with an average diameter of ≈7 nm, and have been first utilized as anodes in lithium‐ion batteries. They deliver a high reversible specific capacity of 185.7 mAh g?1 at 0.2 C (33.6 mA g?1) and maintain 92.1 mAh g?1 after 1000 cycles at an extremely high rate 50 C with an outstanding retention of 98.4%. Notably, the coulombic efficiency of Ti3+–TiO2 has been improved by approximately 10% compared with that of pristine rutile TiO2, which can be mainly attributed to its prompt electron transfer because of the introduction of Ti3+. Again the synergetic merits are noticed when the promoted electronic conductivity is combined with a shortened Li+ diffusion length resulting from the ultrafine nanorod structure, giving rise to the remarkable rate capabilities and extraordinary cycling stabilities for applications in fast and durable charge/discharge batteries. It is of great significance to incorporate Ti3+ into rutile TiO2 to exhibit particular electrochemical characteristics triggering an effective way to improve the energy storage properties.  相似文献   

4.
Maintaining structural stability and alleviating the intrinsic poor conductivity of conversion‐type reaction anode materials are of great importance for practical application. Introducing void space and a highly conductive host to accommodate the volume changes and enhance the conductivity would be a smart design to achieve robust construction; effective electron and ion transportation, thus, lead to prolonged cycling life and excellent rate performance. Herein, uniform yolk–shell FeP@C nanoboxes (FeP@CNBs) with the inner FeP nanoparticles completely protected by a thin and self‐supported carbon shell are synthesized through a phosphidation process with yolk–shell Fe2O3@CNBs as a precursor. The volumetric variation of the inner FeP nanoparticles during cycling is alleviated, and the FeP nanoparticles can expand without deforming the carbon shell, thanks to the internal void space of the unique yolk–shell structure, thus preserving the electrode microstructure. Furthermore, the presence of the highly conductive carbon shell enhances the conductivity of the whole electrode. Benefiting from the unique design of the yolk–shell structure, the FeP@CNBs manifests remarkable lithium/potassium storage performance.  相似文献   

5.
In this work, a full‐cell sodium‐ion battery (SIB) with a high specific energy approaching 300 Wh kg?1 is realized using a sodium vanadium fluorophosphate (Na3V2(PO4)2F3, NVPF) cathode and a tin phosphide (SnPx) anode, despite both electrode materials having greatly unbalanced specific capacities. The use of a cathode employing an areal loading more than eight times larger than that of the anode can be achieved by designing a nanostructured nanosized NVPF (n‐NVPF) cathode with well‐defined particle size, porosity, and conductivity. Furthermore, the high rate capability and high potential window of the full‐cell can be obtained by tuning the Sn/P ratio (4/3, 1/1, and 1/2) and the nanostructure of an SnPx/carbon composite anode. As a result, the full‐cell SIBs employing the nanostructured n‐NVPF cathode and the SnPx/carbon composite anode (Sn/P = 1/1) exhibit outstanding specific energy (≈280 Wh kg?1(cathode+anode)) and energy efficiency (≈78%); furthermore, the results are comparable to those of state‐of‐the‐art lithium‐ion batteries.  相似文献   

6.
As an anode material for lithium‐ion batteries, titanium dioxide (TiO2) shows good gravimetric performance (336 mAh g?1 for LiTiO2) and excellent cyclability. To address the poor rate behavior, slow lithium‐ion (Li+) diffusion, and high irreversible capacity decay, TiO2 nanomaterials with tuned phase compositions and morphologies are being investigated. Here, a promising material is prepared that comprises a mesoporous “yolk–shell” spherical morphology in which the core is anatase TiO2 and the shell is TiO2(B). The preparation employs a NaCl‐assisted solvothermal process and the electrochemical results indicate that the mesoporous yolk–shell microspheres have high specific reversible capacity at moderate current (330.0 mAh g?1 at C/5), excellent rate performance (181.8 mAh g?1 at 40C), and impressive cyclability (98% capacity retention after 500 cycles). The superior properties are attributed to the TiO2(B) nanosheet shell, which provides additional active area to stabilize the pseudocapacity. In addition, the open mesoporous morphology improves diffusion of electrolyte throughout the electrode, thereby contributing directly to greatly improved rate capacity.  相似文献   

7.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

8.
In the work, a facile yet efficient self‐sacrifice strategy is smartly developed to scalably fabricate hierarchical mesoporous bi‐component‐active ZnO/ZnFe2O4 (ZZFO) sub‐microcubes (SMCs) by calcination of single‐resource Prussian blue analogue of Zn3[Fe(CN)6]2 cubes. The hybrid ZZFO SCMs are homogeneously constructed from well‐dispersed nanocrstalline ZnO and ZnFe2O4 (ZFO) subunites at the nanoscale. After selectively etching of ZnO nanodomains from the hybrid, porously assembled ZFO SMCs with integrate architecture are obtained accordingly. When evaluated as anodes for LIBs, both hybrid ZZFO and ZFO samples exhibit appealing electrochemical performance. However, the as‐synthesized ZZFO SMCs demonstrate even better electrochemical Li‐storage performance, including even larger initial discharge capacity and reversible capacity, higher rate behavior and better cycling performance, particularly at high rates, compared with the single ZFO, which should be attributed to its unique microstructure characteristics and striking synergistic effect between the bi‐component‐active, well‐dispersed ZnO and ZFO nanophases. Of great significance, light is shed upon the insights into the correlation between the electrochemical Li‐storage property and the structure/component of the hybrid ZZFO SMCs, thus, it is strongly envisioned that the elegant design concept of the hybrid holds great promise for the efficient synthesis of advanced yet low‐cost anodes for next‐generation rechargeable Li‐ion batteries.  相似文献   

9.
In this study, partially crystalline anodic TiO2 with SiO2 well‐distributed througout the entire oxide film is prepared using plasma electrolytic oxidation (PEO) to obtain a high‐capacity anode with an excellent cycling stability for Li‐ion batteries. The micropore sizes in the anodic film become inhomogeneous as the SiO2 content is increased from 0% to 25%. The X‐ray diffraction peaks show that the formed oxide contains the anatase and rutile phases of TiO2. In addition, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray analyses confirm that TiO2 contains amorphous SiO2. Anodic oxides of the SiO2/TiO2 composite prepared by PEO in 0.2 m H2SO4 and 0.4 m Na2SiO3 electrolyte deliver the best performance in Li‐ion batteries, exhibiting a capacity of 240 µAh cm?2 at a fairly high current density of 500 µA cm–2. The composite film shows the typical Li–TiO2 and Li–SiO2 redox peaks in the cyclic voltammogram and a corresponding plateau in the galvanostatic charge/discharge curves. The as‐prepared SiO2/TiO2 composite anode shows at least twice the capacity of other types of binder‐free TiO2 and TiO2 composites and very stable cycling stability for more than 250 cycles despite the severe mechanical stress.  相似文献   

10.
Constructing high voltage (>4.5 V) cathode materials for sodium‐ion batteries has emerged in recent years to replace lithium batteries for large scale energy storage applications. Herein, an electrochemically stable Na0.66(Ni0.13Mn0.54Co0.13)O2 (Na‐NMC) buckyballs with an uniform size of 5 µm and a high tap density of 2.34 g cm?3, which exhibit excellent cyclability even at the high current with a cut‐off voltage of 4.7 V, is demonstrated. The Na‐NMC buckyballs are prepared from (Ni0.13Mn0.54Co0.13)CO3 (NMC) precursor synthesized using a facile hydrothermal method. The Na‐NMC delivers a reversible capacity of around 120 mAh g?1 between 4.7 and 2 V at 1 C rate along with an excellent cyclic stability (90%) until 150 cycles, which is one of the best outcomes among the reported P2‐type cathodes tested at the high operating voltage range. Furthermore, Na‐NMC‐180 buckyballs with a high tap density is offering an enhanced volumetric energy density, a superior rate performance and an outstanding cyclic stability. The X‐ray adsorption fine structure analysis is used to study the local electronic structure changes around the Co, Mn, and Ni after cycling process at 1 C rate. The findings open opportunities for tailoring high‐performance and high‐energy cathode materials for sodium‐ion batteries.  相似文献   

11.
The synthesis of a new type of redox‐active covalent triazine framework (rCTF) material, which is promising as an anode for Li‐ion batteries, is reported. After activation, it has a capacity up to ≈1190 mAh g?1 at 0.5C with a current density of 300 mA g?1 and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half‐cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g?1 and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g?1. By electrochemical analysis and theoretical calculations, it is found that its lithium‐storage mechanism involves multi‐electron redox‐reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast‐charging Li‐ion half and full cells even at a high capacity loading.  相似文献   

12.
3D micro/nanobatteries in high energy and power densities are drawing more and more interest due to the urgent demand of them in integrating with numerous micro/nanoscale electronic devices, such as smart dust, miniaturized sensors, actuators, BioMEMS chips, and so on. In this study, the electrochemical performances of 3D hexagonal match‐like Si/Ge nanorod (NR) arrays buffered by TiN/Ti interlayer, which are fabricated on Si substrates by a cost‐effective, wafer scale, and Si‐compatible process are demonstrated and systematically investigated as the anode in sodium‐ion batteries. The optimized Si/TiN/Ti/Ge composite NR array anode displays superior areal/specific capacities and cycling stability by reason of their favorable 3D nanostructures and the effective conductive layers of TiN/Ti thin films. Sodium‐ion insertion behaviors are experimentally investigated in postmorphologies and elemental information of the cycled composite anode, and theoretically studied by the first principles calculation upon the adsorption and diffusion energies of sodium in Ge unit cell. The preferential diffusion of sodium in Ge structure over in Si lattice is evidently proved. The successful configuration of these distinctive wafer‐scale Si‐based Na‐ion micro/nanobattery anodes can provide insight into exploring and designing new Si/Ge‐based electrode materials, which can be integrated into micro‐electronic devices as on chip power systems in the future.  相似文献   

13.
Li‐rich layered cathode materials have been considered as a family of promising high‐energy density cathode materials for next generation lithium‐ion batteries (LIBs). However, although activation of the Li2MnO3 phase is known to play an essential role in providing superior capacity, the mechanism of activation of the Li2MnO3 phase in Li‐rich cathode materials is still not fully understood. In this work, an interesting Li‐rich cathode material Li1.87Mn0.94Ni0.19O3 is reported where the Li2MnO3 phase activation process can be effectively controlled due to the relatively low level of Ni doping. Such a unique feature offers the possibility of investigating the detailed activation mechanism by examining the intermediate states and phases of the Li2MnO3 during the controlled activation process. Combining powerful synchrotron in situ X‐ray diffraction analysis and observations using advanced scanning transmission electron microscopy equipped with a high angle annular dark field detector, it has been revealed that the subreaction of O2 generation may feature a much faster kinetics than the transition metal diffusion during the Li2MnO3 activation process, indicating that the latter plays a crucial role in determining the Li2MnO3 activation rate and leading to the unusual stepwise capacity increase over charging cycles.  相似文献   

14.
15.
Co3O4 anode materials exhibit poor conductivity and a large volume change, rendering controlling of their nanostructure essential to optimize their lithium storage performance. Carbon‐doped Co3O4 hollow nanofibers (C‐doped Co3O4 HNFs), for the first time are synthesized using bifunctional polymeric nanofibers as template and carbon source. Compared with undoped Co3O4 HNFs and solid Co3O4 NFs, C‐doped Co3O4 HNFs feature a remarkably high specific capacity, excellent cycling stability, and superior rate capacity as anode materials for lithium‐ion batteries. The superior performance of C‐doped Co3O4 HNFs electrodes can be attributed to their structural features, which confer enhanced electron transportation and Li+ ion diffusion due to C‐doping, and tolerance for volume change due to the 1D hollow structure. Density functional theory calculations provide a good explanation of the observed enhanced conductivity in C‐doped Co3O4 HNFs.  相似文献   

16.
Anatase TiO2 is considered as one of the promising anodes for sodium‐ion batteries because of its large sodium storage capacities with potentially low cost. However, the precise reaction mechanisms and the interplay between surface properties and electrochemical performance are still not elucidated. Using multimethod analyses, it is herein demonstrated that the TiO2 electrode undergoes amorphization during the first sodiation and the amorphous phase exhibits pseudocapacitive sodium storage behaviors in subsequent cycles. It is also shown that the pseudocapacitive sodium storage performance is sensitive to the nature of solid electrolyte interphase (SEI) layers. For the first time, it is found that ether‐based electrolytes enable the formation of thin (≈2.5 nm) and robust SEI layers, in contrast to the thick (≈10 nm) and growing SEI from conventional carbonate‐based electrolytes. First principle calculations suggest that the higher lowest unoccupied molecular orbital energies of ether solvents/ion complexes are responsible for the difference. TiO2 electrodes in ether‐based electrolyte present an impressive capacity of 192 mAh g?1 at 0.1 A g?1 after 500 cycles, much higher than that in carbonate‐based electrolyte. This work offers the clarified picture of electrochemical sodiation mechanisms of anatase TiO2 and guides on strategies about interfacial control for high performance anodes.  相似文献   

17.
18.
Electrochemical water splitting is very attractive for green fuel energy production, but the development of active, stable, and earth‐abundant catalysts for the hydrogen evolution reaction (HER) remains a major challenge. Here, core–shell nanostructured architectures are used to design and fabricate efficient and stable HER catalysts from earth‐abundant components. Vertically oriented quasi‐2D core–shell MoO2/MoSe2 nanosheet arrays are grown onto insulating (SiO2/Si wafer) or conductive (carbon cloth) substrates. This core–shell nanostructure array architecture exhibits synergistic properties to create superior HER performance, where high density structural defects and disorders on the shell generated by a large crystalline mismatch of MoO2 and MoSe2 act as multiple active sites for HER, and the metallic MoO2 core facilitates charge transport for proton reduction while the vertical nanosheet arrays ensure fully exposed active sites toward electrolytes. As a HER catalyst, this electrode exhibits a low Tafel slope of 49.1 mV dec?1, a small onset potential of 63 mV, and an ultralow charge transfer resistance (Rct) of 16.6 Ω at an overpotential of 300 mV with a long cycling durability for up to 8 h. This work suggests that a quasi 2D core–shell nanostructure combined with a vertical array microstructure is a promising strategy for efficient water splitting electrocatalysts with scale‐up potential.  相似文献   

19.
Fiber‐shaped aqueous lithium‐ion capacitors (FALICs) featured with high energy and power densities together with outstanding safety characteristics are emerging as promising electrochemical energy‐storage devices for future portable and wearable electronics. However, the lack of high‐capacitance fibrous anodes is a major bottleneck to achieve high performance FALICs. Here, hierarchical MoS2@α‐Fe2O3 core–shell heterostructures consisting of spindle‐shaped α‐Fe2O3 cores and MoS2 nanosheet shells on a carbon nanotube fiber (CNTF) are successfully fabricated. Originating from the unique core/shell architecture and prominent synergetic effects for multi‐components, the resulting MoS2@α‐Fe2O3/CNTF anode delivers a remarkable specific capacitance of 2077.5 mF cm?2 (554.0 F cm?3) at 2 mA cm?2, substantially outperforming most of the previously reported fibrous anode materials. Further density functional theory calculations reveal that the MoS2@α‐Fe2O3 nano‐heterostructure possesses better electrical conductivity and stronger adsorption energy of Li+ than those of the individual MoS2 and α‐Fe2O3. By paring with the self‐standing LiCoO2/CNTF battery‐type cathode, a prototype quasi‐solid‐state FALIC with a maximum operating voltage of 2.0 V is constructed, achieving impressive specific capacitance (253.1 mF cm?2) and admirable energy density (39.6 mWh cm?3). Additionally, the newly developed FALICs can be woven into the flexible textile to power wearable electronics. This work presents a novel effective strategy to design high‐performance anode materials for next‐generation wearable ALICs.  相似文献   

20.
Fe3O4 nanocrystals confined in mesocellular carbon foam (MSU‐F‐C) are synthesized by a “ host–guest ” approach and tested as an anode material for lithium‐ion batteries (LIBs). Briefly, an iron oxide precursor, Fe(NO3)3·9H2O, is impregnated in MSU‐F‐C having uniform cellular pores ~30 nm in dia­meter, followed by heat‐treatment at 400 °C for 4 h under Ar. Magnetite Fe3O4 nanocrystals with sizes between 13–27 nm are then successfully fabricated inside the pores of the MSU‐F‐C, as confirmed by transmission electron microscopy (TEM), dark‐field scanning transmission electron microscopy (STEM), energy dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), and nitrogen sorption isotherms. The presence of the carbon most likely allows for reduction of some of the Fe3+ ions to Fe2+ ions via a carbothermoreduction process. A Fe3O4/MSU‐F‐C nanocomposite with 45 wt% Fe3O4 exhibited a first charge capacity of 1007 mA h g?1 (Li+ extraction) at 0.1 A g?1 (~0.1 C rate) with 111% capacity retention at the 150th cycle, and retained 37% capacity at 7 A g?1 (~7 C rate). Because the three dimensionally interconnected open pores are larger than the average nanosized Fe3O4 particles, the large volume expansion of Fe3O4 upon Li‐insertion is easily accommodated inside the pores, resulting in excellent electrochemical performance as a LIB anode. Furthermore, when an ultrathin Al2O3 layer (<4 Å) was deposited on the composite anode using atomic layer deposition (ALD), the durability, rate capability and undesirable side reactions are significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号