首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the effect of surface topology of a block copolymer/neutral surface/SiO2 trilayered gate insulator on the properties of pentacene organic thin film transistor (OTFT) by the controlled etching of self assembled poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) block copolymer. The rms roughness of the uppermost block copolymer film directly in contact with pentacenes was systematically controlled from 0.27 nm to approximately 12.5 nm by the selective etching of cylindrical PMMA microdomains hexagonally packed and aligned perpendicular to SiO2 layer with 20 and 38 nm of diameter and periodicity, respectively. Both mobility and On/Off ratio were significantly reduced by more than 3 orders of magnitudes with the film roughness in OTFTs having 60 nm thick pentacene active layer. The poor device performance observed with the etched thin film of block copolymer dielectric is attributed to a defective pentacene active layer and the mixed crystalline structure consisting of thin film and bulk phase arising from the massive nucleation of pentacene preferentially at the edge of each cylindrical etched hole.  相似文献   

2.
Solvothermal vapor annealing at elevated temperature is applied to a thin film from a cylinder‐forming polystyrene‐block‐poly(dimethyl siloxane) (PS‐b‐PDMS) diblock copolymer. At this, the film is swollen in the vapor of n‐heptane (highly selective for PDMS). This vapor is stepwise replaced by the vapor of toluene (weakly selective for PS). The morphologies are investigated using in situ, real‐time grazing‐incidence small‐angle X‐ray scattering (GISAXS). The initial cylindrical morphology is transformed into, among others, the lamellar one. This novel type of experiments allows probing a trajectory in the state diagram of the PS‐b‐PDMS/n‐heptane/toluene mixture. To corroborate the morphologies, they are generated by molecular simulations, and the 2D GISAXS maps are calculated using the distorted‐wave Born approximation. To relate the morphologies to the solvent distribution in the two types of nanodomains, the latter is estimated from the intensities of the Bragg reflections in the 2D GISAXS maps along with the swelling ratio of the film. Comparison with the results from a similar experiment carried out at room temperature results in the same sequence of morphologies; however, at elevated temperature, more well‐ordered structures are obtained. This new approach proves to be efficient to achieve a block copolymer thin film having a desired morphology and orientation.  相似文献   

3.
A simple fabrication, scalable to centimeter scale, of a permeable membrane made of block copolymer containing molecular transport channels is demonstrated by coating photo‐crosslinkable liquid‐crystalline block copolymer, consisting of poly(ethylene oxide) (PEO) and poly(methacrylate) (PMA) bearing stilbene (Stb) mesogens in the side chains (PEO114b‐PMA(Stb)52), onto a sacrificial cellulose acetate film substrate. After thermal annealing, perpendicularly aligned and hexagonally arranged PEO cylindrical domains with a surface density of 1011 cm?2 were formed and then fixed efficiently by photo‐crosslinking the stilbene moieties in the PMA(Stb) domains by [2 + 2] dimerization. The fully penetrating straight PEO cylindrical domains across the 480‐nm‐thick membrane were well‐defined and visualized as molecule‐transport channels. After exfoliated by removal of the cellulose acetate layer, the membrane could be transferred onto another substrate by either scooping or a horizontal lifting method. Throughout the processes, the fully penetrating PEO channels across the membrane are preserved to open at both ends. A simple permeation experiment demonstrates that rhodamine dyes permeate efficiently through the PEO cylindrical channels of the annealed membrane but not across a non‐annealed one.  相似文献   

4.
Reported here are the nonvolatile electrical characteristics of pentacene‐based organic field‐effect transistor (OFET) memory devices created from the green electrets of sugar‐based block copolymer maltoheptaose‐block‐polystyrene (MH‐b‐PS), and their supramolecules with 1‐aminopyrene (APy). The very hydrophilic and abundant‐hydroxyl MH block is employed as a charge‐trapping site, while the hydrophobic PS block serves as a matrix as well as a tunneling layer. The orientation of the MH nanodomains could be well controlled in the PS matrix with random spheres, vertical cylinders, and ordered horizontal cylinders via increasing solvent annealing time, leading to different electrical switching characteristics. The electron‐trapping ability induced by the horizontal‐cylinder MH is stronger than those of the random‐sphere and vertical‐cylinder structures, attributed to the effective contact area. The electrical memory window of the device is further improved via the supramolecules of hydrogen‐bonding 1‐aminopyrene to the MH moieties of MH‐b‐PS for enhancing the hole‐trapping ability. The optimized device using the horizontal cylinders of the supramolecule electret exhibits the excellent memory characteristics of a wide memory window (52.7 V), retention time longer than 104 s with a high ON/OFF ratio of >105, and stable reversibility over 200 cycles. This study reveals a new approach to achieve a high‐performance flash memory through the morphology control of sugar‐based block copolymers and their supramolecules.  相似文献   

5.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

6.
Inexpensive, large area patterning of ex‐situ synthesized metallic nanoparticles (NPs) at the nanoscale may enable many technologies including plasmonics, nanowire growth, and catalysis. Here, site‐specific localization of Au NPs onto nanoscale chemical patterns of polymer brushes is investigated. In this approach, patterns of hydroxyl‐terminated poly(styrene) brushes are transferred from poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) block copolymer films onto a replica substrate via molecular transfer printing, and the remaining areas are filled with hydroxyl‐terminated poly(2‐vinyl pyridine) (P2VP‐OH) brushes. Citrate‐stabilized Au NPs (13 nm) selectively bind to P2VP‐OH functionalized regions and the quality of the resulting assemblies depends on high chemical contrast in the patterned brushes. Minimization of the interpenetration of P2VP‐OH chains into PS brushes during processing is the key for achieving high chemical contrast. Large area hexagonal arrays of single Au NPs with a placement accuracy of 3.4 nm were obtained on patterns (~20 nm spots, ~40 nm pitch) derived from self‐assembled cylinder‐forming PS‐b‐PMMA films. Linear arrays of Au NPs were generated on patterns (40 nm lines, 80nm pitch) derived from lamellae‐forming PS‐b‐PMMA that had been directed to assemble on lithographically defined masters.  相似文献   

7.
Block copolymers of poly(pentafluorostyrene) (PFS) and poly(methyl methacrylate) (PMMA) (PFS‐b‐PMMA) have been synthesized using atom transfer radical polymerization (ATRP). Then, nanoporous fluoropolymer films have been prepared via selective UV decomposition of the PMMA blocks in the PFS‐b‐PMMA copolymer films. The chemical composition and structure of the PFS homopolymers and copolymers have been characterized using nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS), and molecular‐weight measurements. The cross‐sectional and surface morphologies of the PFS‐b‐PMMA copolymer films before and after selective UV decomposition of the PMMA blocks have been studied using field‐emission scanning electron microscopy (FESEM). The nanoporous fluoropolymer films with pore sizes in the range 30–50 nm and porosity in the range 15–40 % have been obtained from the PFS‐b‐PMMA copolymers of different PMMA content. Dielectric constants approaching 1.8 have been achieved in the nanoporous fluoropolymer films which contain almost completely decomposed PMMA blocks.  相似文献   

8.
Control over nanopore size and 3D structure is necessary to advance membrane performance in ubiquitous separation devices. Here, inorganic nanoporous membranes are fabricated by combining the assembly of cylinder‐forming poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) block copolymer and sequential infiltration synthesis (SIS). A key advance relates to the use of PMMA majority block copolymer films and the optimization of thermal annealing temperature and substrate chemistry to achieve through‐film vertical PS cylinders. The resulting morphology allows for direct fabrication of nanoporous AlOx by selective growth of Al2O3 in the PMMA matrix during the SIS process, followed by polymer removal using oxygen plasma. Control over the pore diameter is achieved by varying the number of Al2O3 growth cycles, leading to pore size reduction from 21 to 16 nm. 3D characterization, using scanning transmission electron microscopy tomography, reveals that the AlOx channels are continuous through the film and have a gradual increase in pore size with depth. Finally, the ultrafiltration performance of the fabricated AlOx membrane for protein separation as a function of protein size and charge is demonstrated.  相似文献   

9.
Achieving sub‐10 nm high‐aspect‐ratio patterns from diblock copolymer self‐assembly requires both a high interaction parameter (χ, which is determined by the incompatibility between the two blocks) and a perpendicular orientation of microdomains. However, these two conditions are extremely difficult to achieve simultaneously because the blocks in a high‐χ copolymer typically have very different surface energies, favoring in‐plane microdomain orientations. A fully perpendicular orientation of a high‐χ block copolymer, poly(styrene‐block‐dimethylsiloxane) (PS‐b‐PDMS) is realized here using partially hydrolyzed polyvinyl alcohol (PVA) top coats with a solvent annealing process, despite the large surface energy differences between PS and PDMS. The PVA top coat on the block copolymer films under a solvent vapor atmosphere significantly reduces the interfacial energy difference between two blocks at the top surface and provides sufficient solvent concentration gradient in the through‐thickness direction and appropriate solvent evaporation rates within the film to promote a perpendicular microdomain orientation. The effects of interfacial energy differences and the swellability of PVA top coats controlled by the degree of hydrolysis on the orientation of micro­domains are examined. The thickness of the BCP film and top coats also affects the orientation of the BCP film.  相似文献   

10.
The application of well‐defined poly(furfuryl glycidyl ether) (PFGE) homopolymers and poly(ethylene oxide)‐b‐poly(furfuryl glycidyl ether) (PEO‐b‐PFGE) block copolymers synthesized by living anionic polymerization as self‐healing materials is demonstrated. This is achieved by thermo‐reversible network formation via (retro) Diels‐Alder chemistry between the furan groups in the side‐chain of the PFGE segments and a bifunctional maleimide crosslinker within drop‐cast polymer films. The process is studied in detail by differential scanning calorimetry (DSC), depth‐sensing indentation, and profilometry. It is shown that such materials are capable of healing complex scratch patterns, also multiple times. Furthermore, microphase separation within PEO‐b‐PFGE block copolymer films is indicated by small angle X‐ray scattering (lamellar morphology with a domain spacing of approximately 19 nm), differential scanning calorimetry, and contact angle measurements.  相似文献   

11.
The preparation and characterization of new, tailor‐made polymeric membranes using poly(styrene‐b‐butadiene‐b‐styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self‐assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO2, N2, and CH4). The CH4/N2 ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH4 permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N2 content. The CO2/N2 ideal selectivity of 50, coupled with a CO2 permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post‐combustion capture of carbon dioxide.  相似文献   

12.
The fabrication and catalytic application of a size‐tunable monodisperse nanoparticle array enabled by block copolymer lithography is demonstrated. Highly uniform vertical cylinder nanodomains are achieved in poly(styrene‐block‐4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer thin‐films by solvent annealing. The prominent diffusion of the anionic metal complexes into the protonated P4VP cylinder nanodomains occurs through specific electrostatic interactions in a weakly acidic aqueous solution. This well‐defined diffusion with nanoscale confinement enables preparation of the laterally ordered monodisperse nanoparticle array with sub‐nanometer level precise size tuning. The controlled growth of monodisperse nanoparticle arrays is proven by their catalytic use for vertical carbon nanotube (CNT) growth via plasma enhanced chemical vapor deposition (PECVD). Since the size of the catalyst particles is the decisive parameter for the diameters and wall‐numbers of CNTs, the highly selective growth of double‐walled or triple‐walled CNTs could be accomplished using monodisperse nanoparticle arrays.  相似文献   

13.
TiO2 films of varying thicknesses (up to ≈1.0 µm) with vertically oriented, accessible 7–9 nm nanopores are synthesized using an evaporation‐induced self‐assembly layer‐by‐layer technique. The hypothesis behind the approach is that epitaxial alignment of hydrophobic blocks of surfactant templates induces a consistent, accessible mesophase orientation across a multilayer film, ultimately leading to continuous, vertically aligned pore channels. Characterization using grazing incidence X‐ray scattering, scanning electron microscopy, and impedance spectroscopy indicates that the pores are oriented vertically even in relatively thick films (up to 1 µm). These films contain a combination of amorphous and nanocrystalline anatase titania of value for electrochemical energy storage. When applied as negative electrodes in lithium‐ion batteries, a capacity of 254 mAh g?1 is obtained after 200 cycles for a single‐layer TiO2 film prepared on modified substrate, higher than on unmodified substrate or nonporous TiO2 film, due to the high accessibility of the vertically oriented channels in the films. Thicker films on modified substrate have increased absolute capacity because of higher mass loading but a reduced specific capacity because of transport limitations. These results suggest that the multilayer epitaxial approach is a viable way to prepare high capacity TiO2 films with vertically oriented continuous nanopores.  相似文献   

14.
A novel step‐wise approach for fabrication of periodic arrays of two different types of nanoparticles (NPs), selectively localized at different block copolymer phases is demonstrated. In the first step, pre‐synthesized ≈12 nm silver nanoparticles (AgNPs), stabilized with thiol‐terminated polystyrene, are mixed with poly(styrene‐block‐vinylpyridine) (PS‐b‐PVP) block copolymer in a common solvent. After film casting and consequent solvent vapor annealing the AgNPs are selectively localized within the PS phase of the block copolymer matrix due to the interaction with PS shell of the nanoparticles. In the second step, ≈2–5 nm gold, platinum, or palladium nanoparticles are directly deposited from their aqueous dispersion on the PVP domains of the self‐assembled block copolymer thin films. In such a way, thin films of nanostructured block copolymer with two types of nanoparticles, separated by the two distinct block copolymer phases, are prepared in a step‐wise manner. The presented method is very simple and can be applied for various combinations of pre‐synthesized nanoparticles where the characteristics of either type of nanoparticles are tuned accordingly in advance, which is more difficult to achieve for in situ synthesized nanoparticles.  相似文献   

15.
Balancing the interfacial interactions between a polymer and substrate is one of the most commonly employed methods to ensure the vertical orientation of nanodomains in block copolymer lithography. Although a number of technologies have been developed to meet this challenge, there remains a need for a universal solution for surface neutralization that combines simple synthesis, fast processing times, generality toward substrate, low density of film defects, and good surface adhesion. The chemistry of ketenes, which combines highly efficient polymer crosslinking through dimerization and surface adhesion through reaction with the substrate, is shown to be well suited to the challenge. The versatile chemistry of ketenes are accessed through the post‐polymerization of Meldrum's acid, which can be easily incorporated into copolymers through controlled radical polymerization processes. Further, the Meldrum's acid monomer is synthesized on a large scale in one step without the need for chromatography. Processing times of seconds, low defect density, simple synthetic procedures, and good substrate adhesion make these materials attractive as robust block copolymer neutralization layers.  相似文献   

16.
Next‐generation lithography techniques based on the self‐assembly of block copolymers (BCPs) are promising methods for high‐resolution pattering. BCPs with a high incompatibility (high‐χ), such as polystyrene‐polydimethylsiloxane (PS‐PDMS), show encouraging results in terms of resolution. In the strong segregation regime, the high diffusive energy barrier of PS‐PDMS excessively reduces the self‐assembly kinetics; this is why solvent–vapor annealing is typically adopted to shorten the self‐assembly time. Plasticizers are generally used to reduce the glass transition temperature (Tg) of polymers. In this study, commercial plasticizers such as dioctylsebacate and diisooctyl adipate are blended with PS‐PDMS polymers, and their influence on the self‐assembly process is investigated. The intrinsic PS selectivity of the plasticizers brings the BCP to form PS‐PDMS micelles, which results in highly ordered self‐assembled body‐centered cubic spherical PS‐PDMS after spin‐coating without any annealing. The negligible vapor pressure of plasticizers and the decrease of Tg allow the high mobility of PS‐PDMS micelles in thin films. A transition into a stable horizontal cylindrical morphology is then possible by ultrafast thermal annealing (30 s). The complete process, from the BCP deposition to the final pattern transfer into Si, is presented on 300 mm standard wafers, which makes this method promising for microelectronic industrial integration.  相似文献   

17.
The effects of using a blocking dielectric layer and metal nanoparticles (NPs) as charge‐trapping sites on the characteristics of organic nano‐floating‐gate memory (NFGM) devices are investigated. High‐performance NFGM devices are fabricated using the n‐type polymer semiconductor, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), and various metal NPs. These NPs are embedded within bilayers of various polymer dielectrics (polystyrene (PS)/poly(4‐vinyl phenol) (PVP) and PS/poly(methyl methacrylate) (PMMA)). The P(NDI2OD‐T2) organic field‐effect transistor (OFET)‐based NFGM devices exhibit high electron mobilities (0.4–0.5 cm2 V?1 s?1) and reliable non‐volatile memory characteristics, which include a wide memory window (≈52 V), a high on/off‐current ratio (Ion/Ioff ≈ 105), and a long extrapolated retention time (>107 s), depending on the choice of the blocking dielectric (PVP or PMMA) and the metal (Au, Ag, Cu, or Al) NPs. The best memory characteristics are achieved in the ones fabricated using PMMA and Au or Ag NPs. The NFGM devices with PMMA and spatially well‐distributed Cu NPs show quasi‐permanent retention characteristics. An inkjet‐printed flexible P(NDI2OD‐T2) 256‐bit transistor memory array (16 × 16 transistors) with Au‐NPs on a polyethylene naphthalate substrate is also fabricated. These memory devices in array exhibit a high Ion/Ioff (≈104 ± 0.85), wide memory window (≈43.5 V ± 8.3 V), and a high degree of reliability.  相似文献   

18.
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, solvent vapor annealing in supported thin films of poly(2‐hydroxyethyl methacrylate)‐block‐poly(methyl methacrylate) [PHEMA‐b‐PMMA] by means of grazing incidence small angle X‐ray scattering (GISAXS) is investigated. A spin‐coated thin film of a lamellar block copolymer is solvent vapor annealed to induce microphase separation and improve the long‐range order of the self‐assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents, which are chosen to be preferential for each block, enables selective formation of ordered lamellae, gyroid, hexagonal, or spherical morphologies from a single‐block copolymer with a fixed volume fraction. The selected microstructure is then kinetically trapped in the dry film by rapid drying. This paper describes what is thought to be the first reported case where in situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram.  相似文献   

19.
Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil‐like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein‐polymer conjugates that can self‐assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry‐ELP fusions, E10‐mCherry‐E10 and E20‐mCherry, is investigated to compare linear and bola fusion self‐assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer‐like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order‐disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials.  相似文献   

20.
The fabrication and catalytic application of a size‐tunable monodisperse nanoparticle array enabled by block copolymer lithography is demonstrated. Highly uniform vertical cylinder nanodomains are achieved in poly(styrene‐block‐4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer thin‐films by solvent annealing. The prominent diffusion of the anionic metal complexes into the protonated P4VP cylinder nanodomains occurs through specific electrostatic interactions in a weakly acidic aqueous solution. This well‐defined diffusion with nanoscale confinement enables preparation of the laterally ordered monodisperse nanoparticle array with sub‐nanometer level precise size tuning. The controlled growth of monodisperse nanoparticle arrays is proven by their catalytic use for vertical carbon nanotube (CNT) growth via plasma enhanced chemical vapor deposition (PECVD). Since the size of the catalyst particles is the decisive parameter for the diameters and wall‐numbers of CNTs, the highly selective growth of double‐walled or triple‐walled CNTs could be accomplished using monodisperse nanoparticle arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号