首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensors play a major role in many applications today, ranging from biomedicine to safety equipment, where they detect and warn us about changes in the environment. Nanofibers, characterized by high porosity, flexibility, and a large specific surface area, are the ideal material for ultrasensitive, fast‐responding, and user‐friendly sensor design. Indeed, a large specific surface area increases the sensitivity and response time of the sensor as the contact area with the analyte is enlarged. Thanks to the flexibility of membranes, nanofibrous sensors cannot only be applied in high‐end analyte detection, but also in personal, daily use. Many different nanofibrous sensors have already been designed; albeit, the most straightforward and easiest‐to‐interpret sensor response is a visual change in color, which is of particular interest in the case of warning signals. Recently, many researchers have focused on the design of so‐called colorimetric nanofibers, which typically involve the incorporation of a colorimetric functionality into the nanofibrous matrix. Many different strategies have been used and explored for colorimetric nanofibrous sensor design, which are outlined in this feature article. The many examples and applications demonstrate the value of colorimetric nanofibers for advanced optical sensor design, and could provide directions for future research in this area.  相似文献   

2.
A novel Au dimer‐based colorimetric sensor is reported that consists of Au dimers to a chitosan hydrogel film. It utilizes the ultrasensitively gap‐dependent properties of plasmonic coupling (PC) peak shift, which is associated with the dynamical tuning of the interparticle gap of the Au dimer driven by the volume swelling of the chitosan hydrogel film. The interparticle gap and PC peak shift of the Au dimer can be precisely and extensively controlled through the pH‐driven volume change of chitosan hydrogel film. This colorimetric sensor exhibits a high optical sensitivity and stability, and it works in a completely reversible manner at high pH values. Importantly, the sensitivity of the composite film can be tuned by controlling the crosslinking time of the composite film, and thus leading to a wide dynamic tuning sensitive range for different applications. This presented strategy paves a way to achieve the construction of high‐quality colorimetric sensors with ultrahigh sensitivity, stability and wide dynamic tuning sensitive range.  相似文献   

3.
4.
The detection of anions in pure water phase with colorimetric sensor is a long standing challenge. As one of the most important anions, F is associated with nerve gases and the refinement of uranium for nuclear weapons. However, limited by its anions nature, few of the reported colorimetric sensors can successfully applied to detect F–1 in pure water phase. This work designs a colorimetric sensor for F–1 pure water phase detection by taking the advantages of the strong specific binding between F and Si, as well as the color‐changing property of H‐terminated Si nanowires (SiNWs). The sensor demonstrates ultra‐sensitivity, high selectivity, and good stability. The results reveal particular interest for the development of new type aqueous phase anions sensors with SiNWs.  相似文献   

5.
6.
7.
8.
9.
10.
Solution‐gated graphene transistors with graphene as both channel and gate electrodes are fabricated for the first time and used as dopamine sensors with the detection limit down to 1 nM, which is three orders of magnitude better than that of conventional electrochemical measurements. The sensing mechanism is attributed to the change of effective gate voltage applied on the transistors induced by the electro‐oxidation of dopamine at the graphene gate electrodes. The interference from glucose, uric acid, and ascorbic acid on the dopamine sensor is characterized. The selectivity of the dopamine sensor is dramatically improved by modifying the gate electrode with a thin Nafion film by solution process. This work paves the way for developing many other biosensors based on the solution‐gated graphene transistors by specifically functionalizing the gate electrodes. Because the devices are mainly made of graphene, they are potentially low cost and ideal for high‐density integration as multifunctional sensor arrays.  相似文献   

11.
12.
13.
Buried electrodes and protection of the semiconductor with a thin passivation layer are used to yield dual‐gate organic transducers. The process technology is scaled up to 150‐mm wafers. The transducers are potentiometric sensors where the detection relies on measuring a shift in the threshold voltage caused by changes in the electrochemical potential at the second gate dielectric. Analytes can only be detected within the Debye screening length. The mechanism is assessed by pH measurements. The threshold voltage shift depends on pH as ΔVth = (Ctop/Cbottom) × 58 mV per pH unit, indicating that the sensitivity can be enhanced with respect to conventional ion‐sensitive field‐effect transistors (ISFETs) by adjusting the ratio of the top and bottom gate capacitances. Remaining challenges and opportunities are discussed.  相似文献   

14.
Inspired by the powerful photosensitizing properties of the red hair pigments pheomelanins, a photoresponsive cysteine‐containing variant of the adhesive biopolymer polydopamine (pDA) is developed via oxidative copolymerization of dopamine (DA) and 5‐S‐cysteinyldopamine (CDA) in variable ratios. Chemical and spectral analysis indicate the presence of benzothiazole/benzothiazine units akin to those of pheomelanins. p(DA/CDA) copolymers display ­impedance properties similar to those of biological materials and a marked photoimpedance response to light stimuli. The use of the p(DA/CDA) copolymer to implement a solution‐processed hybrid photocapacitive/resistive metal‐insulator‐semiconductor (MIS) device disclosed herein is the first example of technological exploitation of photoactive, red‐hair‐inspired biomaterials as soft enhancement layer for silicon in an optoelectronic device. The bio‐inspired materials described herein may provide the active component of new hybrid photocapacitive sensors with a chemically tunable response to visible light.  相似文献   

15.
16.
Proteases are important pharmaceutical targets for new drugs because of their involvement in numerous disease processes. This study evaluates whether photophysically encoded microparticles carrying fluorescently labeled protease substrates (peptides) at their surface show potential for detecting proteases in a sample. Layer‐by‐layer (LbL) polyelectrolyte coatings, containing a red‐labeled peptidic trypsin substrate, are carefully designed and applied at the surface of the encoded microparticles. The peptide‐loaded LbL coatings lose their red fluorescence upon incubation in a trypsin solution, indicating that LbL‐coated microparticles show potential to screen for the presence of active proteases in biological samples.  相似文献   

17.
Nanoscale architectures found in nature have unique functionalities and their discovery has led to significant advancements in various fields including optics, wetting, and adhesion. The sensilla of arthropods, comprised of unique hierarchical structures, are a representative example which inspired the development of various bioinspired systems, owing to their hypersensitive and ultrafast responsivity to mechanical and chemical stimuli. This report presents a geometry‐switchable and highly H2‐reactive Janus nanofiber (H‐NF) array inspired by the structural features of the arthropod sensilla. The H‐NF array (400 nm diameter, 4 µm height, 1.2 µm spacing distance, and hexagonal array) exhibits reversible structural deformation when exposed to a flammable concentration of hydrogen gas (4 vol% H2 in N2) with fast response times (5.1 s). The structural change can be detected with the bare eye, which is a result of change in the optical transmittance due to the structural deformation of the H‐NF array. Based on these results, an eye‐readable H2‐sensor that requires no additional electrical apparatus is demonstrated, including wetting‐controllable H2‐selective smart surfaces and H2‐responsive fasteners.  相似文献   

18.
A new approach to ubiquitous sensing for indoor applications is presented, using low‐cost indoor perovskite photovoltaic cells as external power sources for backscatter sensors. Wide‐bandgap perovskite photovoltaic cells for indoor light energy harvesting are presented with the 1.63 and 1.84 eV devices that demonstrate efficiencies of 21% and 18.5%, respectively, under indoor compact fluorescent lighting, with a champion open‐circuit voltage of 0.95 V in a 1.84 eV cell under a light intensity of 0.16 mW cm?2. Subsequently, a wireless temperature sensor self‐powered by a perovskite indoor light‐harvesting module is demonstrated. Three perovskite photovoltaic cells are connected in series to create a module that produces 14.5 µW output power under 0.16 mW cm?2 of compact fluorescent illumination with an efficiency of 13.2%. This module is used as an external power source for a battery‐assisted radio‐frequency identification temperature sensor and demonstrates a read range by of 5.1 m while maintaining very high frequency measurements every 1.24 s. The combined indoor perovskite photovoltaic modules and backscatter radio‐frequency sensors are further discussed as a route to ubiquitous sensing in buildings given their potential to be manufactured in an integrated manner at very low cost, their lack of a need for battery replacement, and the high frequency data collection possible.  相似文献   

19.
It is challenging to post‐tune the sensitivity of a tactile force sensor. Herein, a facile method is reported to tailor the sensing properties of conductive polymer composites by utilizing the liquid‐like property of dynamic polymer matrix at low strain rates. The idea is demonstrated using dynamic polymer composites (CB/dPDMS) made via evaporation‐induced gelation of the suspending toluene solution of carbon black (CB) and acid‐catalyzed dynamic polydimethylsiloxane (dPDMS). The dPDMS matrices allow CB to redistribute to change the sensitivity of materials at the liquid‐like state, but exhibit typical solid‐like behavior and thus can be used as strain sensors at normal strain rates. It is shown that the gauge factor of the polymer composites can be easily post‐tuned from 1.4 to 51.5. In addition, the dynamic polymer matrices also endow the composites with interesting self‐healing ability and recyclability. Therefore, it is envisioned that this method can be useful in the design of various novel tactile sensing materials for many applications.  相似文献   

20.
We introduce a pixel‐structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X‐ray converter when it is coupled to photosensitive elements. The sample was prepared by filling Gd2O2S:Tb scintillation material into a square‐pore‐shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X‐ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 mm?1. The spatial frequency at 10% of the modulation‐transfer function was about 6 mm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号