首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Antiferroelectrics, characterized by electrically controlled antipolar-polar phase transformation, have attracted tremendous attention as a class of promising electroactive materials for assembling electronic devices. The emerging two-dimensional (2D) halide perovskites with superior compositional diversity offer an ideal platform for exploring electroactive materials, whereas lead-free antiferroelectric counterparts are still scarcely reported. Herein, for the first time, a new lead-free 2D germanium iodide perovskite antiferroelectric (i-BA)2CsGe2I7 ( 1 , i-BA is iso-butylammonium) has been presented, which exhibits a high Curie temperature (Tc) up to 403 K. Remarkably, benefiting from the lone pair stereochemical activity in Ge2+ induced large structural distortion and Cs+ ion off-center displacement, 1 shows well-defined double P–E hysteresis loops in a wide temperature range with a giant maximum polarization up to 18.8 µC cm−2, which achieves a new high record among molecular antiferroelectrics. Moreover, under a low external electric field of 22.5 kV cm−1, the antipolar-polar phase transformation in 1 affords a recoverable energy storage density Wrec of 0.27 J cm−3 and high storage efficiency up to 79.76%. Such lead-free halide perovskite antiferroelectric with intriguing antiferroelectric behaviors, including high Tc, large polarization and remarkable energy storage properties, is exciting, which provides an alternative candidate for high-performance antiferroelectrics for environmentally friendly electronic devices.  相似文献   

3.
    
With the advent of flexible and wearable electronics and sensors, there is an urgent need to develop energy‐harvesting solutions that are compatible with such wearables. However, many of the proposed energy‐harvesting solutions lack the necessary mechanical properties, which make them susceptible to damage by repetitive and continuous mechanical stresses, leading to serious degradation in device performance. Developing new energy materials that possess high deformability and self‐healability is essential to realize self‐powered devices. Herein, a thermoelectric ternary composite is demonstrated that possesses both self‐healing and stretchable properties produced via 3D‐printing method. The ternary composite films provide stable thermoelectric performance during viscoelastic deformation, up to 35% tensile strain. Importantly, after being completely severed by cutting, the composite films autonomously recover their thermoelectric properties with a rapid response time of around one second. Using this self‐healable and solution‐processable composite, 3D‐printed thermoelectric generators are fabricated, which retain above 85% of their initial power output, even after repetitive cutting and self‐healing. This approach represents a significant step in achieving damage‐free and truly wearable 3D‐printed organic thermoelectrics.  相似文献   

4.
    
The thermoelectric compound (GeTe)x(AgSbTe2)1?x, in short (TAGS‐x), is investigated with a focus on two stoichiometries, i.e., TAGS‐50 and TAGS‐85. TAGS‐85 is currently one of the most studied thermoelectric materials with great potential for thermoelectric applications. Yet, surprisingly, the lowest thermal conductivity is measured for TAGS‐50, instead of TAGS‐85. To explain this unexpected observation, atom probe tomography (APT) measurements are conducted on both samples, revealing clusters of various compositions and sizes. The most important role is attributed to Ag2Te nanoprecipitates (NPs) found in TAGS‐50. In contrast to the Ag2Te NPs, the matrix reveals an unconventional bond breaking mechanism. More specifically, a high probability of multiple events (PME) of ≈60% is observed for the matrix by APT. Surprisingly, the PME value decreases abruptly to ≈20–30% for the Ag2Te NPs. These differences can be attributed to differences in chemical bonding. The precipitates' PME value is indicative of normal bonding, i.e., covalent bonding with normal optical modes, while materials with this unconventional bond breaking found in the matrix are characterized by metavalent bonding. This implies that the interface between the metavalently bonded matrix and covalently bonded Ag2Te NP is partly responsible for the reduced thermal conductivity in TAGS‐50.  相似文献   

5.
    
The stereochemical expression of the ns2 lone pair significantly impacts symmetry breaking and corresponding photoelectric properties. However, hindered by the symmetric octahedral configuration, the Pb2+ 6s2 lone pair in the well-conductive lead halide hybrid perovskites (LHHP) are normally stereo-inactive, new approaches to activate the 6s2 lone pair are still greatly desired. Herein, by exploiting a perovskitizer tuning Pb2+ lone pair method, the study successfully obtains a stereo-active 6s2 in the polar perovskite PA2MHy2Pb3Br10 (PMPB, PA = n-propylamine, MHy = methylhydrazine), and unprecedentedly performs a multiaxial self-powered X-ray detection. In detail, the stereo-active 6s2 lone pair is caused by the coordination bond between the perovskitizer MHy and Pb atom. Emphatically, the N-Pb bond induces a large angular distortion parameter (≈45 times larger than other LHHP) and the lowest-symmetric space group (P1) crystallization. Therefore, PMPB natively contains multiaxial polarization, which acts as the driving force to separate and transport the X-ray-generated carriers, thus enabling multiaxial self-powered X-ray detection with a low detection limit (129 nGy s−1). This work reveals the relationship between stereo-active lone pair and polarization and sheds light on future X-ray detection.  相似文献   

6.
    
Composite engineering favors high thermoelectric performance by tuning the carrier and phonon transport. Herein, orthorhombic and rhombohedral dual-phase GeSe are designed in situ by tailoring chemical bonds. Atom probe tomography verifies the coexistence of a covalently bonded orthorhombic phase and a metavalently bonded rhombohedral phase in GeSe-InTe alloys. The production of the rhombohedral phase simultaneously increases the carrier concentration, the carrier mobility, the band degeneracy, and the density-of-states effective mass due to the reduced formation energy of cation vacancies and the improved crystal symmetry. These attributes are beneficial to a high-power factor. In addition, the thermal conductivity can be significantly reduced due to the intrinsically strong lattice anharmonicity of the metavalently bonded phase, the interfacial acoustic phonon mismatch across different bonding mechanisms, and the phonon scattering at vacancy-solute clusters. Moreover, the metavalently bonded phase embraces higher solubility of dopants that enables the further optimization of properties by Cd-Ag doping, resulting in a zT of 0.95 at 773 K as well as enhanced strength and ductility in dual-phase Ge0.94Cd0.03Ag0.03Se(InTe)0.15. This work indicates that in situ design of dual-phase composites by tailoring chemical bonds is an effective method for enhancing the thermoelectric and mechanical properties of GeSe and other p-bonded chalcogenides.  相似文献   

7.
    
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

8.
    
Forming solid solutions, due to its universal applicability, has been the most effective strategy for improving the performance of a wide variety of thermoelectric materials. Taking p‐type FeNb1−xVxSb solid solutions as an example, here it is shown that the formation of solid solutions cannot always improve the thermoelectric performance. The peak zT and thermoelectric quality factor of p‐type FeNb1−xVxSb decrease with increasing V content, remarkably different from other thermoelectric systems. The present results demonstrate that comprehensive understanding of the multiple effects of forming solid solutions is important for developing high‐performance thermoelectrics.  相似文献   

9.
10.
    
Polymer‐based composites are of high interest in the field of thermoelectric (TE) materials because of their properties: abundance, low thermal conductivity, and nontoxicity. In applications, like TE for wearable energy harvesting, where low operating temperatures are required, polymer composites demonstrate compatible with the targeted specifications. The main challenge is reaching high TE efficiency. Fillers and chemical treatments can be used to enhance TE performance of the polymer matrix. The combined application of vertically aligned carbon nanotubes forest (VA‐CNTF) is demonstrated as fillers and chemical post‐treatment to obtain high‐efficiency TE composites, by dispersing VA‐CNTF into a poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate matrix. The VA‐CNTF keeps the functional properties even in flexible substrates. The morphology, structure, composition, and functional features of the composites are thoroughly investigated. A dramatic increase of power factor is observed at the lowest operating temperature difference ever reported. The highest Seebeck coefficient and electrical conductivity are 58.7 µV K?1 and 1131 S cm?1, respectively. The highest power factor after treatment is twice as high in untreated samples. The results demonstrate the potential for the combined application of VA‐CNTF and chemical post‐treatment, in boosting the TE properties of composite polymers toward the development of high efficiency, low‐temperature, flexible TEs.  相似文献   

11.
    
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

12.
    
The materials commonly used to fabricate thermoelectric devices are tellurium, lead, and germanium. These materials ensure the best thermoelectric performance, but exhibit drawbacks in terms of availability, sustainability, cost, and manufacturing complexity. Moreover, they do not guarantee a safe and cheap implementation in wearable thermoelectric applications. Here, p‐Type and n‐type flexible thermoelectric textiles are produced with sustainable and low‐cost materials through green and scalable processes. Cotton is functionalized with inks made with biopolyester and carbon nanomaterials. Depending on the nanofiller, i.e., graphene nanoplatelets, carbon nanotubes, or carbon nanofibers, positive or negative Seebeck coefficient values are obtained, resulting in a remarkable electrical conductivity value of 55 S cm?1 using carbon nanotubes. The best bending and washing stability are registered for the carbon nanofiber‐based biocomposites, which increase their electrical resistance by 5 times after repeated bending cycles and only by 30% after washing. Finally, in‐plane flexible thermoelectric generators coupling the best p‐ and n‐type materials are fabricated and analysed, resulting in an output voltage of ≈1.65 mV and a maximum output power of ≈1.0 nW by connecting only 2 p/n thermocouples at a temperature difference of 70 °C.  相似文献   

13.
    
Low‐temperature bonding is an important fabrication technique for advanced microelectronics, microelectromechanical systems (MEMS), and optoelectronic devices. Recently, many low‐temperature bonding techniques such as surface activated bonding have been studied in order to create unique device structures for a wide range of photonics applications. This paper focuses on low‐temperature bonding techniques and reviews the state‐of‐the‐art applications involving optoelectronic devices.  相似文献   

14.
    
The synthesis of the metal‐coordination polymer poly(nickel tetrathiooxalate) (NiTTO) is presented, which represents an alternative route to n‐type thermoelectric materials similar in nature to nickel ethenetetrathiolate (NiETT) polymers. The TTO monomer is synthesized through an electrochemical reduction of carbon disulfide, followed by coordination polymerization with a nickel(II) salt to yield a coordination complex polymer with a neutral repeat unit. An alkali metal counterion exchange and polymerization optimization are performed, and a thermoelectric power factor of 6 µW m−1 K−2 (electrical conductivity of over 10 S cm−1) is achieved for NiTTO composite films in a polyvinylidene fluoride (PVDF) matrix. This is significantly higher than other reported n‐type polymers (and to within a factor of two of NiETT) and demonstrates the potential of NiTTO as a new thermoelectric material. Elemental analysis indicates a nearly neutral backbone structure in NiTTO with minimal charge balancing alkali ions, indicating that these polymers are more oxidized than NiETTs. X‐ray photoelectron spectroscopy reveals a different coordination environment for NiTTO compared to NiETTs with the same alkali counterion, indicating that—despite their structural similarity in theory—these two materials are indeed different.  相似文献   

15.
    
Organic thermoelectrics have witnessed rapid development in the past decade for low temperature energy harvesting applications. While high‐performance p‐type polymers have been demonstrated, n‐type materials have lagged behind due to the limited number of stable n‐dopants and low doping efficiencies. Nickel‐coordination polymers are a promising class of n‐type polymers as they are conducting without extrinsic doping, thus overcoming a major challenge. However, advantages in thermoelectric properties are outweighed by a complicated synthesis and a poorly understood reaction mechanism that has resulted in a large variation in literature for the same material. This progress report provides a comprehensive and critical overview of syntheses and thermoelectric property optimization approaches for two coordination polymers, namely Ni‐ethenetetrathiolate (NiETT) and Ni‐tetrathiooxalate (NiTTO). In particular, material characterization and thin film fabrication techniques are discussed, and the importance of reporting statistically relevant thermoelectric properties is highlighted to ensure reproducibility among different groups. A short discussion on prototype devices based on NiETT is presented, and finally, directions for future development of these and other n‐type metal‐coordinated polymers are suggested.  相似文献   

16.
    
Half‐Heusler (HH) compounds are currently promising thermoelectric (TE) materials due to their outstanding performance. For reliable n‐ and p‐type HH compounds, the dimensionless figure of merit zT is reported as greater than unity. However, to develop a high‐performance TE module, zT, high‐temperature stability, and compatibility of n‐ and p‐type materials are key parameters. Here, the TE and thermomechanical properties and the high‐temperature stability of Nb‐based HH compounds: n‐type Nb0.75M0.1CoSb and p‐type FeNb0.9M0.1Sb (M = Ti, Zr, Hf) are investigated. The results reveal that the Ti‐doped system exhibits better TE and thermomechanical properties than the Zr‐ and Hf‐doped systems. Furthermore, the Ti‐doped samples show good high‐temperature stability in an inert atmosphere up to 773 K and in air up to 673 K. The performance of a 2π‐module based on the best n‐type Nb0.75Ti0.1CoSb and p‐type FeNb0.9Ti0.1Sb is simulated by using the 3D finite element method. The maximum output power density (ωmax) and conversion efficiency (ηmax) of 2.3 W cm−2 and 4.0%, respectively, are obtained when the cold‐ and hot‐side temperatures are 298 and 773 K, respectively.  相似文献   

17.
    
Thermoelectric generators (TEGs) operate in the presence of a temperature gradient, where the constituent thermoelectric (TE) material converts heat into electricity via the Seebeck effect. However, TE materials are characterized by a thermoelectric figure of merit (ZT) and/or power factor (PF), which often has a strong dependence on temperature. Thus, a single TE material spanning a given temperature range is unlikely to have an optimal ZT or PF across the entire range, leading to inefficient TEG performance. Compositionally graded organic–inorganic nanocomposites are demonstrated, where the composition of the TE nanocomposite can be systematically tuned along the length of the TEG, in order to optimize the PF along the applied temperature gradient. The nanocomposite composition is dynamically tuned by an aerosol‐jet printing method with controlled in situ mixing capability, thus enabling the realization of such compositionally graded thermoelectric composites (CG‐TECs). It is shown how CG‐TECs can be realized by varying the loading weight percentage of Bi2Te3 nanoparticles or Sb2Te3 nanoflakes within an organic conducting matrix using bespoke solution‐processable inks. The enhanced energy harvesting capability of these CG‐TECs from low‐grade waste heat (<100 °C) is demonstrated, highlighting the improvement in output power over single‐component TEGs.  相似文献   

18.
    
The control of the carrier concentration is a key topic in the optimization of the thermoelectric power factor. It depends intricately on the defect chemistry of a host phase (here: TiNiSn) and the boundary conditions set by competing phases. The large impact of a slight off‐stoichiometry in the intermetallic half‐Heusler phase TiNiSn makes combinatorial techniques ideally suited for systematic optimization of its thermoelectric performance. In this work, computational thermochemistry, combinatorial synthesis, and high‐throughput characterization are combined to obtain a complete map of the thermoelectric power factor for the Ti–Ni–Sn system. The role of the chemical potential of the constituents in determining the detailed nonstoichiometric composition of the intermetallic half‐Heusler phase TiNiSn is elucidated. This work not only confirms the assumption of a large phase‐width in terms of Ni surplus but also demonstrates that TiNiSn phases with a relatively large Ti surplus can be produced. This can serve as a new route for achieving high carrier concentrations by self‐doping in the ternary system Ti–Ni–Sn. The defect thermochemistry calculations for the carrier concentration are in excellent agreement with the experimental results. The findings of this work suggest new ways of improving the thermoelectric performance of half‐Heusler phases such as TiNiSn.  相似文献   

19.
    
Thermoelectric technology has attracted great attention due to its ability to recover and convert waste heat into readily available electric energy. Among the various candidate materials, liquid‐like compounds have received tremendous research interest on account of their intrinsically ultralow lattice thermal conductivity, tunable electrical properties, and high thermoelectric performance. Despite their complex phase transitions and diverse crystal structures, liquid‐like materials have two independent sublattices in common: one rigid sublattice formed by immobile ions for the free transport of electrons and one liquid‐like sublattice consisting of highly mobile ions to interrupt the thermal transports. This review first outlines the common structural features of liquid‐like thermoelectrics, along with their unusual electron and phonon transport behaviors that well satisfy the concept of “phonon‐liquid electron‐crystal.” Next, some commonly adopted strategies for further improving their thermoelectric performance are highlighted. The main progress achieved in the typical liquid‐like TE materials is then summarized, with an emphasis on their diverse crystal structures, common characteristics, and unique transport properties. The recent understandings on the stability issue of liquid‐like TE materials are also introduced. Finally, an outlook is given for the liquid‐like materials with the aim to boost further development in this exciting scientific subfield.  相似文献   

20.
    
Organic electronic devices have gained immense popularity in the last 30 years owing to their increasing performance. Organic thin‐film transistors (OTFTs) are one of the basic organic electronic devices with potential industrial applications. Another class of devices called organic thermoelectric (OTE) materials can directly transform waste heat into usable electrical power without causing any pollution. p‐Type transistors outperform n‐type transistors because the latter requires a lower orbital energy level for efficient electron injection and stable electron transport under ambient conditions. Aromatic building blocks can be utilized in constructing n‐type semiconductors. Quinoidal compounds are another promising platform for optoelectronic applications because of their unique properties. Since their discovery in 1970s, quinoidal oligothiophene‐based n‐type semiconductors have drawn considerable attention as candidates for high‐performance n‐type semiconductors in OTFTs and OTEs. Herein, the development history of quinoidal oligothiophene‐based semiconductors is summarized, with a focus on the molecular design and the influence of structural modification on molecular packing and thus the device performance of the corresponding quinoidal oligothiophene‐based semiconductors. Insights on the potential of quinoidal oligothiophenes for high‐performance n‐type OTFTs and OTEs are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号