首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially cholesterol‐substituted 8‐arm poly(ethylene glycol)‐block‐poly(L ‐lactide) (8‐arm PEG‐b‐PLLA‐cholesterol) has been prepared as a novel star‐shaped, biodegradable copolymer derivative. The amphiphilic 8‐arm PEG‐b‐PLLA‐cholesterol aqueous solution (polymer concentration, above 3 wt%) exhibits instantaneous temperature‐induced gelation at 34 °C, but the virgin 8‐arm PEG‐b‐PLLA does not, irrespective of concentration. Moreover, an extracellular matrix (ECM)‐like micrometer‐scale network structure has been created with favorable porosity for three‐dimensional proliferation of cells inside the hydrogel. This network structure is mainly attributed to specific self‐assembly between cholesterol groups. The 10 and 20 wt% hydrogels are eroded gradually in phosphate buffered saline at 37 °C over the course of a month, and after that the gel becomes completely dissociated. Moreover, L929 cells encapsulated into the hydrogel are viable and proliferate three‐dimensionally inside the hydrogels. Thus, in‐vitro cell culture studies demonstrate that 8‐arm PEG‐b‐PLLA‐cholesterol is a promising candidate as a novel injectable cellular scaffold.  相似文献   

2.
A novel mixed micelle with a multifunctional core and shell is successfully prepared from a graft copolymer, poly(N‐isopropyl acrylamide‐co‐methacrylic acid)‐g‐poly(d,l ‐lactide) (P(NIPAAm‐co‐MAAc)‐g‐PLA) and two diblock copolymers, poly(ethylene glycol)‐b‐poly(d,l ‐lactide) and poly (2‐ethyl‐2‐oxazoline)‐b‐poly(d,l ‐lactide). This nanostructure completely screens the highly negative charges of the graft copolymer and exhibits multifunctionality because it has a specialized core/shell structure. An example of this micelle structure used in intracellular drug delivery demonstrates a strong relationship between drug release and the functionality of the mixed micelle. Additionally, the efficiency of the screening feature is also displayed in the cytotoxicities; mixed micelles exhibit higher drug activity and lower material cytotoxicity than micelles from P(NIPAAm‐co‐MAAc)‐g‐PLA ([NIPAAm]/[MAAc]/[PLA] = 84:5.9:2.5 mol/mol) copolymer. This study not only presents a new micelle structure generated using a graft–diblock copolymer system, but also elucidates concepts upon which the preparation of a multifunctional micelle from a graft copolymer with a single (or many) diblock copolymer(s) can be based for applications in drug delivery.  相似文献   

3.
This paper reports on the degradation and protein release behavior of a self‐assembled hydrogel system composed of β‐cyclodextrin‐ (βCD) and cholesterol‐derivatized 8‐arm star‐shaped poly(ethylene glycol) (PEG8). By mixing βCD‐ and cholesterol‐derivatized PEG8 (molecular weights 10, 20 and 40 kDa) in aqueous solution, hydrogels with different rheological properties are formed. It is shown that hydrogel degradation is mainly the result of surface erosion, which depends on the network swelling stresses and initial crosslink density of the gels. This degradation mechanism, which is hardly observed for other water‐absorbing polymer networks, leads to a quantitative and nearly zero‐order release of entrapped proteins. This system therefore offers great potential for protein delivery.  相似文献   

4.
This work designs a class of biocompatible PEG‐chitosan@CDs hybrid nanogels by integrating nonlinear poly(ethylene glycol) (PEG), chitosan, and graphitic carbon dots (CDs) into a single nanoparticle for two‐photon fluorescence (TPF) bioimaging, pH and near‐infrared (NIR) light dual‐responsive drug release, and synergistic therapy. Such hybrid nanogels can be simply prepared from a one‐pot surfactant‐free precipitation polymerization of the PEG macromonomers complexed with chitosan and CDs in water, resulting in a semi‐interpenetration of chitosan chains and an immobilization of CDs in the nonlinear PEG networks. The embedded CDs in hybrid nanogels not only serve as an excellent confocal and TPF imaging contrast agent and fluorescent pH‐sensing probe, but also enhance the loading capacity of the hybrid nanogels for hydrophobic anticancer drug. The chitosan can induce a pH‐sensitive swelling/deswelling of the hybrid nanogels for pH‐regulated drug release over the physiologically important range of 5.0–7.4 and surface modulation of embedded CDs to realize fluorescent pH sensing. The thermosensitive nonlinear PEG network can promote the drug release through the local heat produced by the embedded CDs under NIR irradiation. The in vitro results indicate that the hybrid nanogels demonstrated high therapeutic efficacy through the synergistic effect of combined chemo–photothermal treatments.  相似文献   

5.
The synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐containing conjugated polymer (CP) and the polymer loaded poly(lactic‐co‐glycolic‐acid) (PLGA) nanoparticles (NPs) with surface antibody functionalization for human epidermal growth factor receptor 2 (HER2)‐positive cancer cell detection are reported. Due to the steric hindrance of POSS, NPs prepared from POSS‐containing CP show improved photoluminescence quantum yield as compared to that for the corresponding linear CP encapsulated NPs. In addition, the amount of ‐NH2 groups on NP surface is well‐controlled by changing the molar ratio of poly(lactic‐co‐glycolic‐acid)‐b‐poly(ethylene glycol) (PLGA‐b‐PEG‐NH2) to PLGA‐OCH3 during NP formulation. Further conjugation of the NH2‐functionalized CP NPs with trastuzumab (Herceptin) yields NPs with fine‐tuned protein density. These NPs are able to discriminate SKBR‐3 breast cancer cells from MCF‐7 breast cancer cells and NIH/3T3 fibroblast cells both on substrate and in suspension by taking advantage of the specific binding affinity between trastuzumab and HER2 overexpressed in SKBR‐3 breast cancer cell membrane. The high quantum yield and fine‐tuned surface specific protein functionalization make the POSS‐containing CP loaded NPs a good candidate for targeted biological imaging and detection.  相似文献   

6.
Glioblastoma is the most common primary brain tumor in adults and still remains incurable, due to the limited accumulation of drugs in the tumor area. Herein, iRGD‐modified nanoparticles, DOX@MSN‐SS‐iRGD&1MT, are developed for simultaneous delivery of chemotherapeutic agents (doxorubicin, DOX) and immune checkpoint inhibitor (1‐methyltryptophan, 1MT) into orthotopic glioma. The nanoparticles are comprised of mesoporous silica nanoparticles loaded with DOX, combined with Asp‐Glu‐Val‐Asp (DEVD) connected 1MT, and finally modified by iRGD. These nanoparticles show the capability of penetrating through blood brain barrier into the tumor area, and significantly improve accumulation of drugs in orthotopic brain tumors with minimal side effects. The nanoparticles also activate cytotoxic CD8+ T lymphocytes and inhibit CD4+ T cells in both GL261 cells cocultured with splenocytes in vitro and GL261‐luc orthotopic tumors in vivo. Moreover, the expression of antitumor cytokines IFNα/β, IFN‐γ, TNF, IL‐17, STING, and GrzB is upregulated while protumor proteins p‐STAT3 and IL‐10 are downregulated in the brain tumor area. This study demonstrates the advantages of chemo‐immunotherapeutic nanoparticles accumulated in the brain tumor area and their effectively inhibiting tumor proliferation, which establishes a delivery platform to promote antitumor immunity against glioblastoma.  相似文献   

7.
The synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐containing conjugated polymer (CP) and the polymer loaded poly(lactic‐co‐glycolic‐acid) (PLGA) nanoparticles (NPs) with surface antibody functionalization for human epidermal growth factor receptor 2 (HER2)‐positive cancer cell detection are reported. Due to the steric hindrance of POSS, NPs prepared from POSS‐containing CP show improved photoluminescence quantum yield as compared to that for the corresponding linear CP encapsulated NPs. In addition, the amount of ‐NH2 groups on NP surface is well‐controlled by changing the molar ratio of poly(lactic‐co‐glycolic‐acid)‐b‐poly(ethylene glycol) (PLGA‐b‐PEG‐NH2) to PLGA‐OCH3 during NP formulation. Further conjugation of the NH2‐functionalized CP NPs with trastuzumab (Herceptin) yields NPs with fine‐tuned protein density. These NPs are able to discriminate SKBR‐3 breast cancer cells from MCF‐7 breast cancer cells and NIH/3T3 fibroblast cells both on substrate and in suspension by taking advantage of the specific binding affinity between trastuzumab and HER2 overexpressed in SKBR‐3 breast cancer cell membrane. The high quantum yield and fine‐tuned surface specific protein functionalization make the POSS‐containing CP loaded NPs a good candidate for targeted biological imaging and detection.  相似文献   

8.
Brain‐derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a biocompatible polymer, poly(ethylene glycol)‐b‐poly(l ‐glutamic acid) (PEG‐PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano‐BDNF. Upon simple mixture, Nano‐BDNF spontaneously forms uniform spherical particles with a core–shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG‐PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano‐BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano‐BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides‐induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.  相似文献   

9.
A general strategy to disperse and functionalize pristine carbon nanotubes in a single‐step process is developed using conjugated block copolymers. The conjugated block copolymer contains two blocks: a conjugated polymer block of poly(3‐hexylthiophene), and a functional non‐conjugated block with tunable composition. When the pristine carbon nanotubes are sonicated with the conjugated block copolymers, the poly(3‐hexylthiophene) blocks bind to the surface of de‐bundled carbon nanotubes through non‐covalent ππ interactions, stabilizing the carbon nanotube dispersion, while the functional blocks locate at the outer surface of carbon nanotubes, rendering the carbon nanotubes with desired functionality. In this paper, conjugated block copolymers of poly(3‐hexylthiophene)‐b‐poly(methyl methacrylate), poly(3‐hexylthiophene)‐b‐poly(acrylic acid), and poly(3‐hexylthiophene)‐b‐poly(poly(ethylene glycol) acrylate) are used to demonstrate this general strategy.  相似文献   

10.
Novel donor–acceptor rod–coil diblock copolymers of regioregular poly(3‐hexylthiophene) ( P3HT )‐block‐poly(2‐phenyl‐5‐(4‐vinylphenyl)‐1,3,4‐oxadiaz‐ole) ( POXD ) are successfully synthesized by the combination of a modified Grignard metathesis reaction ( GRIM ) and atom transfer radical polymerization ( ATRP ). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low‐lying highest occupied molecular orbital (HOMO) energy level (–6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT‐ b ‐POXD exhibits a non‐volatile bistable memory or insulator behavior depending on the P3HT / POXD block ratio and the resulting morphology. The ITO/ P3HT44b‐ POXD18 /Al memory device shows a non‐volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor‐acceptor rod‐coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications.  相似文献   

11.
Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery were prepared from an environmentally‐sensitive graft copolymer, poly(N‐isopropyl acrylamide‐co‐methacryl acid)‐g‐poly(D ,L ‐lactide) (P(NIPAAm‐co‐MAAc)‐g‐PLA), a diblock copolymer, methoxy poly(ethylene glycol)‐b‐poly(D ,L ‐lactide) (mPEG‐PLA) and two functionalized diblock copolymers, galactosamine‐PEG‐PLA (Gal‐PEG‐PLA) and fluorescein isothiocyanate‐PEG‐PLA (FITC‐PEG‐PLA). Anticancer drug, free base doxorubicin (Dox) was incorporated into the inner core of multifunctional micelles by dialysis. From the drug release study, a change in pH (from pH 7.4 to 5.0) deformed the structure of the inner core from that of aggregated P(NIPAAm‐co‐MAAc), causing the release of a significant quantity of doxorubicin (Dox) from multifunctional micelles. Multifunctional micelles target specific tumors by an asialoglycoprotein (HepG2 cells)‐Gal (multifunctional micelle) receptor‐mediated tumor targeting mechanism. This mechanism then causes intracellular pH changes which induce Dox release from multifunctional micelles and that micelles have strong effects on the viability of HepG2 cells and are abolished by galactose. Confocal laser scanning microscopy (CLSM) reveals a clear distribution of multifunctional micelles. With careful design and sophisticated manipulation, polymeric micelles can be widely used in cancer diagnosis, cancer targeting, and cancer therapy simultaneously.  相似文献   

12.
All‐solution‐processed multifunctional organic bioelectronics composed of reduced graphene oxide (rGO) and dexamethasone 21‐phosphate disodium salt (DEX)‐loaded poly(3,4‐ethylenedioxythiophene) (PEDOT) microelectrode arrays on indium tin oxide glass are reported. They can be used to manipulate the differentiation of human mesenchymal stem cells (hMSCs). In the devices, the rGO material functions as an adhesive coating to promote the adhesion and alignment of hMSC cells and to accelerate their osteogenic differentiation. The poly(L ‐lysine‐graft‐ethylene glycol) (PLL‐g‐PEG)‐coated PEDOT electrodes serve as electroactive drug‐releasing electrodes. In addition, the corresponding three‐zone parallel devices operate as efficient drug‐releasing components through spatial‐temporal control of the release of the drug DEX from the PEDOT matrix. Such devices can be used for long‐term cell culturing and controlled differentiation of hMSCs through electrical stimulation.  相似文献   

13.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

14.
Cinnamaldehyde, a major active compound of cinnamon, is known to induce apoptotic cell death in numerous human cancer cells. Here, dual acid‐responsive polymeric micelle‐forming cinnamaldehyde prodrugs, poly[(3‐phenylprop‐2‐ene‐1,1‐diyl)bis(oxy)bis(ethane‐2,1‐diyl)diacrylate]‐co‐4,4’(trimethylene dipiperidine)‐co‐poly(ethylene glycol), termed PCAE copolymers, are reported. PCAE is designed to incorporate cinnamaldehyde via acid‐cleavable acetal linkages in its pH‐sensitive hydrophobic backbone and self assemble to form stable micelles which can encapsulate camptothecin (CPT). PCAE self assembles to form micelles which release CPT and cinnamaldehyde in pH‐dependent manners. PCAE micelles induce apoptotic cell death through the generation of intracellular reactive oxygen species (ROS) and exert synergistic anticancer effects with a payload of CPT in vitro and in vivo model of SW620 human colon tumor‐bearing mice. It is anticipated that dual acid‐sensitive micelle‐forming PCAE with intrinsic anticancer activities has enormous potential as novel anticancer therapeutics.  相似文献   

15.
Vertical orientation of lamellar and cylindrical nanodomains of block copolymers on substrates is one of the most promising means for developing nanopatterns of next‐generation microelectronics and storage media. However, parallel orientation of lamellar and cylindrical nanodomains is generally preferred due to different affinity between two block segments in a block copolymer toward the substrate and/or air. Thus, vertical orientation of the nanodomains is only obtained under various pre‐ or post‐treatments such as surface neutralization by random copolymers, solvent annealing, and electric or magnetic field. Here, a novel self‐neutralization concept is introduced by designing molecular architecture of a block copolymer. Star‐shaped 18 arm poly(methyl methacrylate)‐block‐polystyrene copolymers ((PMMA‐b‐PS)18) exhibiting lamellar and PMMA cylindrical nanodomains are synthesized. When a thin film of (PMMA‐b‐PS)18 is spin‐coated on a substrate, vertically aligned lamellar and cylindrical nanodomains are obtained without any pre‐ or post‐treatment, although thermal annealing for a short time (less than 30 min) is required to improve the spatial array of vertically aligned nanodomains. This result is attributed to the star‐shaped molecular architecture that overcomes the difference in the surface affinity between PS and PMMA chains. Moreover, vertical orientations are observed on versatile substrates, for instance, semiconductor (Si, SiOx), metal (Au), PS or PMMA‐brushed substrate, and a flexible polymer sheet of polyethylene naphthalate.  相似文献   

16.
2D/3D hybrid cell culture systems are constructed by increasing the temperature of the thermogelling poly(ethylene glycol)‐poly(l ‐alanine) diblock copolymer (PEG‐l ‐PA) aqueous solution in which tonsil tissue‐derived mesenchymal stem cells and graphene oxide (GO) or reduced graphene oxide (rGO) are suspended, to 37 °C. The cells exhibit spherical cell morphologies in 2D/3D hybrid culture systems of GO/PEG‐l ‐PA and rGO/PEG‐l ‐PA by using the growth medium. The cell proliferations are 30%–50% higher in the rGO/PEG‐l ‐PA hybrid system than in the GO/PEG‐l ‐PA hybrid system. When chondrogenic culture media enriched with TGF‐β3 is used in the 2D/3D hybrid systems, cells extensively aggregate, and the expression of chondrogenic biomarkers of SOX 9, COL II A1, COL II, and COL X significantly increases in the GO/PEG‐l ‐PA 2D/3D hybrid system as compared with the PEG‐l ‐PA 3D systems and rGO/PEG‐l ‐PA 2D/3D hybrid system, suggesting that the GO/PEG‐l ‐PA 2D/3D hybrid system can be an excellent candidate as a chondrogenic differentiation platform of the stem cell. This paper also suggests that a 2D/3D hybrid system prepared by incorporating 2D materials with various surface biofunctionalities in the in situ forming 3D hydrogel matrix can be a new cell culture system.  相似文献   

17.
Nanocarriers for chemo‐photothermal therapy suffer from insufficient retention at the tumor site and poor penetration into tumor parenchyma. A smart drug‐dye‐based micelle is designed by making the best of the structural features of small‐molecule drugs. P‐DOX is synthesized by conjugating doxorubicin (DOX) with poly(4‐formylphenyl methacrylate‐co‐2‐(diethylamino) ethyl methacrylate)‐b‐polyoligoethyleneglycol methacrylate (P(FPMA‐co‐DEA)‐b‐POEGMA) via imine linkage. Through the π–π stacking interaction, IR780, a near‐infrared fluorescence dye as well as a photothermal agent, is integrated into the micelles (IR780‐PDMs) with the P‐DOX. The IR780‐PDMs show remarkably long blood circulation (t1/2β = 22.6 h). As a result, a progressive tumor accumulation and retention are presented, which is significant to the sequential drug release. Moreover, when entering into a moderate acidic tumor microenvironment, IR780‐PDMs can dissociate into small‐size conjugates and IR780, which obviously increases the penetration depth of drugs, and then improves the lethality to deep‐seated tumor cells. Owing to the high delivery efficiency and superior chemo‐photothermal therapeutic efficacy of IR780‐PDMs, 97.6% tumor growth in the A549 tumor‐bearing mice is suppressed with a low dose of intravenous injection (DOX, 1.5 mg kg?1; IR780, 0.8 mg kg?1). This work presents a brand‐new strategy for long‐acting intensive cancer therapy.  相似文献   

18.
Double stimuli‐responsive membranes are prepared by modification of pH‐sensitive integral asymmetric polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes with temperature‐responsive poly(N‐isopropylacrylamide) (pNIPAM) by a surface linking reaction. PS‐b‐P4VP membranes are first functionalized with a mild mussel‐inspired polydopamine coating and then reacted via Michael addition with an amine‐terminated pNIPAM‐NH2 under slightly basic conditions. The membranes are thoroughly characterized by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared spectroscopy and X‐ray‐induced photoelectron spectroscopy. Additionally dynamic contact angle measurements are performed comparing the sinking rate of water droplets at different temperatures. The pH‐ and thermo‐double sensitivities of the modified membranes are proven by determining the water flux under different temperature and pH conditions.  相似文献   

19.
Core/shell nanoparticles that display a pH‐sensitive thermal response, self‐assembled from the amphiphilic tercopolymer, poly(N‐isopropylacrylamide‐co‐N,N‐dimethylacrylamide‐co‐10‐undecenoic acid) (P(NIPAAm‐co‐DMAAm‐co‐UA)), have recently been reported. In this study, folic acid is conjugated to the hydrophilic segment of the polymer through the free amine group (for targeting cancer cells that overexpress folate receptors) and cholesterol is grafted to the hydrophobic segment of the polymer. This polymer also self‐assembles into core/shell nanoparticles that exhibit pH‐induced temperature sensitivity, but they possess a more stable hydrophobic core than the original polymer P(NIPAAm‐co‐DMAAm‐co‐UA) and a shell containing folate molecules. An anticancer drug, doxorubicin (DOX), is encapsulated into the nanoparticles. DOX release is also pH‐dependent. DOX molecules delivered by P(NIPAAm‐co‐DMAAm‐co‐UA) and folate‐conjugated P(NIPAAm‐co‐DMAAm‐co‐UA)‐g‐cholesterol nanoparticles enter the nucleus more rapidly than those transported by P(NIPAAm‐co‐DMAAm)‐b‐poly(lactide‐co‐glycolide) nanoparticles, which are not pH sensitive. More importantly, these nanoparticles can recognize folate‐receptor‐expressing cancer cells. Compared to the nanoparticles without folate, the DOX‐loaded nanoparticles with folate yield a greater cellular uptake because of the folate‐receptor‐mediated endocytosis process, and, thus, higher cytotoxicity results. These multifunctional polymer core/shell nanoparticles may make a promising carrier to target drugs to cancer cells and release the drug molecules to the cytoplasm inside the cells.  相似文献   

20.
The synthesis of a gelled polymer electrolyte (GPE) using poly(ethylene glycol) blending poly(acrylonitrile) (i.e., PAN‐b‐PEG‐b‐PAN) as a host, dimethyl formamide (DMF) as a plasticizer and LiClO4 as an electrolytic salt for electric double layer capacitors (EDLCs) is reported. The PAN‐b‐PEG‐b‐PAN copolymer in the GPE has a linear configuration for high ionic conductivity and excellent compatibility with carbon electrodes. When assembling the GPE in a carbon‐based symmetric EDLC, the copolymer network facilitates ion motion by reducing the equivalent series resistance and Warburg resistance of the capacitor. This symmetric cell has a capacitance value of 101 F g?1 at 0.125 A g?1 and can deliver an energy level of 11.5 Wh kg?1 at a high power of 10 000 W kg?1 over a voltage window of 2.1 V. This cell shows superior stability, with little decay of specific capacitance after 30 000 galvanostatic charge‐discharge cycles. The distinctive merit of the GPE film is its adjustable mechanical integrity, which makes the roll‐to‐roll assembly of GPE‐based EDLCs readily scalable to industrial levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号