首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Joule heating properties of an ultralight nanocarbon aerogel are investigated with a view to potential applications as energy‐efficient, local gas heater, and other systems. Thermally reduced graphene oxide (rGO) aerogels (10 mg cm?3) with defined shape are produced via emulsion‐templating. Relevant material properties, including thermal conductivity, electrical conductivity and porosity, are assessed. Repeatable Joule heating up to 200 °C at comparatively low voltages (≈1 V) and electrical power inputs (≈2.5 W cm?3) is demonstrated. The steady‐state core and surface temperatures are measured, analyzed and compared to analogous two‐dimensional nanocarbon film heaters. The assessment of temperature uniformity suggests that heat losses are dominated by conductive and convective heat dissipation at the temperature range studied. The radial temperature gradient of an uninsulated, Joule‐heated sample is analyzed to estimate the aerogel's thermal conductivity (around 0.4 W m?1 K?1). Fast initial Joule heating kinetics and cooling rates (up to 10 K s?1) are exploited for rapid and repeatable temperature cycling, important for potential applications as local gas heaters, in catalysis, and for regenerable of solid adsorbents. These principles may be relevant to wide range of nanocarbon networks and applications.  相似文献   

2.
3.
The simple synthesis of ultralow‐density (≈2.32 mg cm?3) 3D reduced graphene oxide (rGO) aerogels that exhibit high electrical conductivity and excellent compressibility are described herein. Aerogels are synthesized using a combined hydrothermal and thermal annealing method in which hexamethylenetetramine is employed as a reducer, nitrogen source, and graphene dispersion stabilizer. The N‐binding configurations of rGO aerogels increase dramatically, as evidenced by the change in pyridinic‐N/quaternary‐N ratio. The conductivity of this graphene aerogel is ≈11.74 S m?1 at zero strain, whereas the conductivity at a compressive strain of ≈80% is ≈704.23 S m?1, which is the largest electrical conductivity reported so far in any 3D sponge‐like low‐density carbon material. In addition, the aerogel has excellent hydrophobicity (with a water contact angle of 137.4°) as well as selective absorption for organic solvents and oils. The compressive modulus (94.5 kPa; ρ ≈ 2.32 mg cm?3) of the rGO aerogel is higher than that of other carbon‐based aerogels. The physical and chemical properties (such as high conductivity, elasticity, high surface area, open pore structure, and chemical stability) of the aerogel suggest that it is a viable candidate for the use in energy storage, electrodes for fuel cells, photocatalysis, environmental protection, energy absorption, and sensing applications.  相似文献   

4.
High porosity combined with mechanical durability in conductive materials is in high demand for special applications in energy storage under limiting conditions, and it is fundamentally important for establishing a relationship between the structure/chemistry of these materials and their properties. Herein, polymer‐assisted self‐assembly and cross‐linking are combined for reduced graphene oxide (rGO)‐based aerogels with reversible compressibility, high elasticity, and extreme durability. The strong interplay of cross‐linked rGO (x‐rGO) aerogels results in high porosity and low density due to the re‐stacking inhibition and steric hinderance of the polymer chains, yet it makes mechanical durability and structural bicontinuity possible even under compressive strains because of the coupling of directional x‐rGO networks with polymer viscoelasticity. The x‐rGO aerogels retain >140% and >1400% increases in the gravimetric and volumetric capacitances, respectively, at 90% compressive strain, showing reversible change and stability of the volumetric capacitance under both static and dynamic compressions; this makes them applicable to energy storage devices whose volume and mass must be limited.  相似文献   

5.
Elastic graphene aerogels are lightweight and offer excellent and electrical performance, expanding their significance in many applications. Recently, elastic graphene aerogels have been fabricated via various methods. However, for most reported elastic graphene aerogels, the fabrication processes are complicated and the applications are usually limited by the brittle mechanical properties. Thus, it still remains a challenge to explore facile processes for the fabrication of graphene aerogels with low density and high compressibility. Herein, arbitrary‐shaped, superelastic, and durable graphene aerogels are fabricated using melamine foam as sacrificial skeleton. The resulting graphene aerogels possess high elasticity under compressive stress of 0.556 MPa and compressive strain of 95%. Thanks to the superelasticity, high strength, excellent flexibility, outstanding thermal stability, and good electrical conductivity of graphene aerogels, they can be applied in sorbents and pressure/strain sensors. The as‐assembled graphene aerogels can adsorb various organic solvents at 176–513 g g?1 depending on the solvent type and density. Moreover, both the squeezing and combustion methods can be adopted for reusing the graphene aerogels. Finally, the graphene aerogels exhibit stable and sensitive current responses, making them the ideal candidates for applications as multifunctional pressure/strain sensors such as wearable devices.  相似文献   

6.
7.
To enhance the sensitivity of graphene aerogel-based piezoresistive sensors by weakening their compressive strength while keeping their elasticity, lightweight and lamellar graphene aerogels (LGAs) with high elasticity and satisfactory electrical conductance networks are fabricated by bidirectional-freezing of aqueous suspensions of graphene oxide in the presence of small amounts of organic solvents, followed by lyophilizing and thermal annealing. Because of the lamellar structure of the LGA, its compressive strength along the direction perpendicular to the lamellar surface is much lower than those of both isotropic and unidirectionally aligned graphene aerogels with similar apparent densities, leading to an ultrasensitive LGA-based piezoresistive sensor with a high sensitivity of −3.69 kPa−1 and a low detection limit of 0.15 Pa. The ultrahigh sensitivity and low detection limit of LGA-based piezoresistive sensor contribute to detecting subtle pressure at room temperature and in liquid nitrogen with ability to detect dynamic force frequency and sound vibration. Besides, thanks to the fewer junction points between the graphene lamellae, LGAs slices can be integrated as a wide-range and sensitive bending sensor, which can detect arbitrary bending angles from 0° to 180° with a low detection limit of 0.29°, and is efficient in detecting biosignals of wrist pulse and finger bending.  相似文献   

8.
Reduced‐graphene‐oxide (rGO) aerogels provide highly stabilising, multifunctional, porous supports for hydrotalcite‐derived nanoparticles, such as MgAl‐mixed‐metal‐oxides (MgAl‐MMO), in two commercially important sorption applications. Aerogel‐supported MgAl‐MMO nanoparticles show remarkable enhancements in adsorptive desulfurization performance compared to unsupported nanoparticle powders, including substantial increases in organosulfur uptake capacity (>100% increase), sorption kinetics (>30‐fold), and nanoparticle regeneration stability (>3 times). Enhancements in organosulfur capacity are also observed for aerogel‐supported NiAl‐ and CuAl‐metal‐nanoparticles. Importantly, the electrical conductivity of the rGO aerogel network adds completely new functionality by enabling accurate and stable nanoparticle temperature control via direct electrical heating of the graphitic support. Support‐mediated resistive heating allows for thermal nanoparticle recycling at much faster heating rates (>700 °C?min?1) and substantially reduced energy consumption, compared to conventional, external heating. For the first time, the CO2 adsorption performance of MgAl‐MMO/rGO hybrid aerogels is assessed under elevated‐temperature and high‐CO2‐pressure conditions relevant for pre‐combustion carbon capture and hydrogen generation technologies. The total CO2 capacity of the aerogel‐supported MgAl‐MMO nanoparticles is more than double that of the unsupported nanoparticles and reaches 2.36 mmol·CO2 g?1 ads (at pCO2 = 8 bar, T = 300 °C), outperforming other high‐pressure CO2 adsorbents.  相似文献   

9.
Graphene, as a fabulously new-emerging carbonaceous material with an ideal two-dimensional rigid honeycomb structure, has drawn extensive attention in the field of material science due to extraordinary properties, including mechanical robustness, large specific surface area, desirable flexibility, and high electronic conductivity. In particular, as an auxiliary material of electrode materials, it has the potential to improve the performance of lithium-ion batteries. However, wide utilization of graphene in lithium-ion batteries is not implemented since tremendous challenges and issues, such as quality, quantity, and cost concerns, hinder its commercialization. There remains a debate whether graphene can act as an impetus in the evolution of lithium-ion batteries. In this review, we summarize the desirable properties, several common synthesis methods as well as applications of graphene as the anode in lithium-ion batteries, seeking to provide insightful guidelines for further development of graphene-based lithium-ion batteries.  相似文献   

10.
Highly compressible graphene‐based monoliths with excellent mechanical, electrical, and thermal properties hold great potential as multifunctional structural materials to realize the targets of energy‐efficiency, comfort, and safety for buildings, vehicles, aircrafts, etc. Unfortunately, the ultralow mechanical strength and limited macroscale have hampered their practical applications. Herein, ultrastrong superelastic graphene aerogel with infinite macroscale is obtained by a facile wet‐press assembly strategy based on the novel superplastic air‐dryable graphene hydrogel (SAGH). The SAGH with isotropic, open‐cell, and highly porous microstructure is carefully designed by a dual‐template sol–gel method. Countless SAGH “bricks” can be assembled together orderly by press to form the strongly combined wet‐press assembled graphene aerogel (WAGA) “wall” after air‐drying. The WAGA with highly oriented, dense, multiple‐arch microstructure possesses arbitrary macroscale, outstanding compressive strength (47 MPa, over 10 times higher than the best ever reported), super elasticity (>97% strain), and high conductivity (378 S m?1). The strong adhesion is attributed to the tightly face‐to‐face contacted graphene interfaces caused by wet‐press and air‐drying. The WAGAs prove to be excellent multifunctional structural materials in the fields of high pressure/strain sensor, tunable mechanical energy absorber, high‐performance fire‐resistance, and thermal insulation. This facile strategy is easily extended to fabricate other similar metamaterials.  相似文献   

11.
石墨烯电极有机薄膜晶体管研究   总被引:3,自引:2,他引:1  
利用化学气相沉积法生长的高性能的层状石墨烯,通过转移和图案化后用作电极,制备了底接触的并五苯有机薄膜晶体管(OTFTs)。原子力显微镜观察发现,石墨烯电极的厚度比一般的金电极薄的多,所以石墨烯电极厚度对并五苯晶粒的生长影响不大。电学性能研究得到器件的输出和转移曲线、开关电流比、阈值电压、场效应迁移率。转移曲线的关态电流约为10-9 A,电流的开关比超过103。基于底接触的并五苯OTFTs的最大场效应迁移率约2×10-2 cm2.V-1.s-1。  相似文献   

12.
13.
电极材料的孔径结构、尺寸、类型直接影响电极材料的电化学性能。文章利用水热反应与硝酸蒸汽处理两步法制备了三维多孔石墨烯材料,并通过控制硝酸蒸汽处理时间,研究其对电极材料电化学特性的影响。通过扫描电镜、透射电镜、拉曼光谱、X射线衍射等多种测试方法对得到的三维多孔石墨烯进行表征,并利用三电极测试方法,通过循环伏安、恒流充放电和电化学阻抗等电化学测试方法研究其电化学性能。结果表明,所制备的三维多孔石墨烯具有微孔与纳米孔相结合的三维结构,两者的协同作用使得三维多孔石墨烯表现出优异的电化学性能,在1A/g的电流密度下,比电容最高可达191.5F/g。  相似文献   

14.
15.
An efficient procedure for the fabrication of highly conductive carbon nanotube/graphene hybrid yarns has been developed. To start, arrays of vertically aligned multi‐walled carbon nanotubes (MWNT) are converted into indefinitely long MWNT sheets by drawing. Graphene flakes are then deposited onto the MWNT sheets by electrospinning to form a composite structure that is transformed into yarn filaments by twisting. The process is scalable for yarn fabrication on an industrial scale. Prepared materials are characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It is found that the electrical conductivity of the composite MWNT‐graphene yarns is over 900 S/cm. This value is 400% and 1250% higher than electrical conductivity of pristine MWNT yarns or graphene paper, respectively. The increase in conductivity is asssociated with the increase of the density of states near the Fermi level by a factor of 100 and a decrease in the hopping distance by an order of magnitude induced by grapene flakes. It is found also that the MWNT‐graphene yarn has a strong electrochemical response with specific capacitance in excess of 111 Fg?1. This value is 425% higher than the capacitance of pristine MWNT yarn. Such substantial improvements of key properties of the hybrid material can be associated with the synergy of MWNT and graphene layers in the yarn structure. Prepared hybrid yarns can benefit such applications as high‐performance supercapacitors, batteries, high current capable cables, and artificial muscles.  相似文献   

16.
王昭  毛峰  黄祥平 《电子器件》2011,34(6):637-640
为了研究碳纳米管/石墨烯复合结构的电学性质,采用密度泛函理论(DFT)下的第一性原理,对四种T型复合结构进行了几何结构优化,分析了该复合结构的结合能,能带结构,电子态密度,Mulliken电荷分布及功函数.结果表明复合结构均表现出半导体性质,其稳定性及电子结构取决于碳纳米管类型和复合结构的连接方式,而且复合材料的功函数...  相似文献   

17.
Here, pyridinic nitrogen dominated graphene aerogels with/without iron incorporation (Fe‐NG and NG) are prepared via a facile and effective process including freeze‐drying of chemically reduced graphene oxide with/without iron precursor and thermal treatment in NH3. A high doping level of nitrogen has been achieved (up to 12.2 at% for NG and 11.3 at% for Fe‐NG) with striking enrichment of pyridinic nitrogen (up to 90.4% of the total nitrogen content for NG, and 82.4% for Fe‐NG). It is found that the Fe‐NG catalysts display a more positive onset potential, higher current density, and better four‐electron selectivity for ORR than their counterpart without iron incorporation. The most active Fe‐NG exhibits outstanding ORR catalytic activity, high durability, and methanol tolerance ability that are comparable to or even superior to those of the commercial Pt/C catalyst at the same catalyst loading in alkaline environment. The excellent ORR performance can be ascribed to the synergistic effect of pyridinic N and Fe‐N x sites (where iron probably coordinates with pyridinic N) that serve as active centers for ORR. Our Fe‐NG can be developed into cost‐effective and durable catalysts as viable replacements of the expensive Pt‐based catalysts in practical fuel cell applications.  相似文献   

18.
19.
Chemical vapor deposition of a thin titanium dioxide (TiO2) film on lightweight native nanocellulose aerogels offers a novel type of functional material that shows photoswitching between water‐superabsorbent and water‐repellent states. Cellulose nanofibrils (diameters in the range of 5–20 nm) with native crystalline internal structures are topical due to their attractive mechanical properties, and they have become relevant for applications due to the recent progress in the methods of their preparation. Highly porous, nanocellulose aerogels are here first formed by freeze‐drying from the corresponding aqueous gels. Well‐defined, nearly conformal TiO2 coatings with thicknesses of about 7 nm are prepared by chemical vapor deposition on the aerogel skeleton. Weighing shows that such TiO2‐coated aerogel specimens essentially do not absorb water upon immersion, which is also evidenced by a high contact angle for water of 140° on the surface. Upon UV illumination, they absorb water 16 times their own weight and show a vanishing contact angle on the surface, allowing them to be denoted as superabsorbents. Recovery of the original absorption and wetting properties occurs upon storage in the dark. That the cellulose nanofibrils spontaneously aggregate into porous sheets of different length scales during freeze‐drying is relevant: in the water‐repellent state they may stabilize air pockets, as evidenced by a high contact angle, in the superabsorbent state they facilitate rapid water‐spreading into the aerogel cavities by capillary effects. The TiO2‐coated nanocellulose aerogels also show photo‐oxidative decomposition, i.e., photocatalytic activity, which, in combination with the porous structure, is interesting for applications such as water purification. It is expected that the present dynamic, externally controlled, organic/inorganic aerogels will open technically relevant approaches for various applications.  相似文献   

20.
Aerogels are considered ideal candidates for various applications, because of their low bulk density, highly porous nature, and functional performance. However, the time intensive nature of the complex fabrication process limits their potential application in various fields. Recently, incorporation of a fibrous network has resulted in production of aerogels with improved properties and functionalities. A facile approach is presented to fabricate hybrid sol–gel electrospun silica‐cellulose diacetate (CDA)‐based nanofibers to generate thermally and mechanically stable nanofiber aerogels. Thermal treatment results in gluing the silica‐CDA network strongly together thereby enhancing aerogel mechanical stability and hydrophobicity without compromising their highly porous nature (>98%) and low bulk density (≈10 mg cm?3). X‐ray photoelectron spectroscopy and in situ Fourier‐transform infrared studies demonstrate the development of strong bonds between silica and the CDA network, which result in the fabrication of cross‐linked structure responsible for their mechanical and thermal robustness and enhanced affinity for oils. Superhydrophobic nature and high oleophilicity of the hybrid aerogels enable them to be ideal candidates for oil spill cleaning, while their flame retardancy and low thermal conductivity can be explored in various applications requiring stability at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号