首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GABAergic projections of the suprachiasmatic nucleus (SCN) were demonstrated in a double-labelling ultrastructural study which visualised the efferents of the SCN by PHA-L tracing, diaminobenzidine (DAB) immunocytochemistry, and GABA with immunogold postembedding staining. The results show a strong contralateral projection of the SCN that is partly GABA-containing. In addition, ipsilateral SCN projections to the dorsomedial hypothalamus and periventricular part of the paraventricular nucleus and sub-paraventricular nucleus were shown to contain GABA. The present results indicate that the SCN may utilize this inhibitory neurotransmitter to regulate and organize its own circadian rhythm as well as using GABA to transmit its diurnal information to other regions of the brain.  相似文献   

2.
Synapses of optic afferents (optic synapses) in the suprachiasmatic nucleus of hooded rats were morphometrically evaluated after exposing the animals to 12 h, 14 days, 2 months, and 8 months of constant light (light rats) and darkness (dark rats). Compared with dark rats, optic synapses from light rats have larger boutons with larger mitochondria, more clear vesicles, fewer dense-core vesicles and front-line vesicles, smaller presynaptic dense projections, a smaller amount of postsynaptic density material, a smaller relative number of Gray-type I (asymmetric) junctions, a greater relative number of Gray-type II (symmetric) junctions, as well as more and larger mitochondria in the postsynaptic dendrites. Junctions of optic synapses are mostly straight, but the small number of positively curved contacts are more flattened in light rats than in dark rats. An age-related increase in the size of presynaptic dense projections was also observed. There are no changes in the sizes of clear and dense-core vesicles, in the size of synaptic junctions and their numerical density in area, and in the unspecific contact area between pre- and postsynaptic elements. The changes in optic boutons are characteristic for activated and relatively disused synapses with a slow, tonic firing rate. It appears that (1) the amount of postsynaptic density material is proportional to the strength of Gray-type I synapses, and that (2) some excitatory optic synapses become inhibitory after long-term activity, whereas some inhibitory synapses turn into excitatory contacts after long-term disuse.  相似文献   

3.
The circadian timing of the suprachiasmatic nucleus (SCN) is modulated by its neural inputs. In the present study, we examine the organization of the neural inputs to the rat SCN using both retrograde and anterograde tracing methods. After Fluoro-Gold injections into the SCN, retrogradely labeled neurons are present in a number of brain areas, including the infralimbic cortex, the lateral septum, the medial preoptic area, the subfornical organ, the paraventricular thalamus, the subparaventricular zone, the ventromedial hypothalamic nucleus, the posterior hypothalamic area, the intergeniculate leaflet, the olivary pretectal nucleus, the ventral subiculum, and the median raphe nuclei. In the anterograde tracing experiments, we observe three patterns of afferent termination within the SCN that correspond to the photic/raphe, limbic/hypothalamic, and thalamic inputs. The median raphe projection to the SCN terminates densely within the ventral subdivision and sparsely within the dorsal subdivision. Similarly, areas that receive photic input, such as the retina, the intergeniculate leaflet, and the pretectal area, densely innervate the ventral SCN but provide only minor innervation of the dorsal SCN. A complementary pattern of axonal labeling, with labeled fibers concentrated in the dorsal SCN, is observed after anterograde tracer injections into the hypothalamus and into limbic areas, such as the ventral subiculum and infralimbic cortex. A third, less common pattern of labeling, exemplified by the paraventricular thalamic afferents, consists of diffuse axonal labeling throughout the SCN. Our results show that the SCN afferent connections are topographically organized. These hodological differences may reflect a functional heterogeneity within the SCN.  相似文献   

4.
GABA is the primary transmitter released by neurons of the suprachiasmatic nucleus (SCN), the circadian clock in the brain. Whereas GABAB receptor agonists exert a significant effect on circadian rhythms, the underlying mechanism by which GABAB receptors act in the SCN has remained a mystery. We found no GABAB receptor-mediated effect on slow potassium conductance, membrane potential, or input resistance in SCN neurons in vitro using whole-cell patch-clamp recording. In contrast, the GABAB receptor agonist baclofen (1-100 microM) exerted a large and dose-dependent inhibition (up to 100%) of evoked IPSCs. Baclofen reduced the frequency of spontaneous IPSCs but showed little effect on the frequency or amplitude of miniature IPSCs in the presence of tetrodotoxin. The activation of GABAB receptors did not modulate postsynaptic GABAA receptor responses. The depression of GABA release by GABAB autoreceptors appeared to be mediated primarily through a modulation of presynaptic calcium channels. The baclofen inhibition of both calcium currents and evoked IPSCs was greatly reduced (up to 100%) by the P/Q-type calcium channel blocker agatoxin IVB, suggesting that P/Q-type calcium channels are the major targets involved in the modulation of GABA release. To a lesser degree, N-type calcium channels were also involved. The inhibition of GABA release by baclofen was abolished by a pretreatment with pertussis toxin (PTX), whereas the inhibition of whole-cell calcium currents by baclofen was only partially depressed by PTX, suggesting that G-protein mechanisms involved in GABAB receptor modulation at the soma and axon terminal may not be identical. We conclude that GABAB receptor activation exerts a strong presynaptic inhibition of GABA release in SCN neurons, primarily by modulating P/Q-type calcium channels at axon terminals.  相似文献   

5.
Whole-cell recording from single neurons of the suprachiasmatic nucleus with an electrode containing the tracer neurobiotin resulted in the staining of multiple neurons in 30% of the cases. Typically, one neuron was darkly stained with dendritic processes and an axon clearly visible while other neurons were lightly stained. The darkly-stained cells were identified as the recorded neuron and tracer-coupled to one to five lightly stained neurons. The resting membrane potential, input membrane conductance, membrane capacitance, the decay time constant and the maximum H-current amplitude of the recorded neurons with tracer-coupled cells were not significantly different from those of neurons not showing tracer coupling. Stimulation of the preoptic area activated an antidromic action potential or an all-or-none small slow inward current in some neurons when the synaptic transmission was blocked by a calcium-free/Mn2+ solution. The small slow inward current did not "collide" with an orthodromically activated action spike suggesting that the current represents the signal from an electrotonically-coupled neuron. In addition, the frequency of biphasic field currents from a neighbouring cell firing were increased by depolarization and decreased by hyperpolarization of the recorded cell. These data demonstrate a chemical and electrical low-resistance coupling of suprachiasmatic nucleus neurons, which could be important in synthesizing the suprachiasmatic nucleus circadian rhythm.  相似文献   

6.
7.
The retinal projections to gastrin-releasing peptide (GRP)-expressing neurons in the rat suprachiasmatic nucleus (SCN) were investigated by double immunofluorescence and immunoelectron microscopy. Optic nerve terminals labeled by cholera toxin B subunit (CTb) which was transported from the retinal ganglion cells were intermingled with GRP-immunoreactive cell bodies and processes in the ventrolateral portion of the SCN. Ultrastructural analysis revealed that CTb-immunoreactive retinal terminals made synaptic contacts with GRP-immunoreactive dendritic processes. These results demonstrated that photic information is directly input from the optic nerve to GRP neurons in the SCN and these GRP neurons may be involved in circadian entrainment by light.  相似文献   

8.
We know that upper body obesity is associated with metabolic complications, but we don't know how regional body fat distribution influences postprandial lipemia in obese adults. Thus, this study explored the respective effects of android or gynoid types of obesity and fasting triglyceridemia on postprandial lipid metabolism and especially triglyceride-rich lipoproteins. Twenty-four obese and 6 lean normotriglyceridemic women (control), age 24-57 yr, were enrolled. Among obese women with an android phenotype, 9 exhibited normal plasma triglyceride levels (mean: 1.38 mmol/L) (NTAO), and 7 displayed a frank hypertriglyceridemia (mean: 2.40 mmol/L) (HTAO). The 8 patients with a gynoid phenotype had normal triglyceride levels (mean: 1.00 mmol/L) (GO). All were given a mixed test meal providing 40 g triglycerides. Serum and incremental chylomicron triglycerides 0-7 h areas under the curve (AUCs) as well as triglyceride levels in apoB-48-containing triglyceride-rich lipoprotein (TRLs) or chylomicrons were significantly higher in HTAOs and NTAOs than in GOs and controls postprandially. The size of chylomicron particles was bigger in controls and GOs than in HTAOs and NTAOs postprandially. Android obese subjects showed abnormally elevated fasting apoB-48 and apoB-100 triglyceride-rich lipoprotein (TRL) levels. Most abnormalities that were found correlated to plasma levels of insulin and apoC-III. In conclusion, an abnormal postprandial lipid pattern is a trait of abdominal obesity even without fasting hypertriglyceridemia.  相似文献   

9.
The preembedding double immunoreaction method was used to study interrelations of enkephalinergic and GABAergic neuronal elements in the dorsal raphe nucleus of the Wistar albino rat. The enkephalin-like neuronal elements were immunoreacted by the peroxidase-antiperoxidase method and silver-gold intensified, which showed strongly and was specific. The GABA-like immunoreactive neurons were immunoreacted by the peroxidase-antiperoxidase method only. GABA-like neural somata were postsynaptic to both the enkephalin-like immunoreactive and the non-immunoreactive axon terminals. The enkephalin-like immunoreactive axon terminals were also found to synapse GABA-like immunoreactive dendrites. The GABA-like immunoreactive neuronal elements were also found to receive synapses from other non-immunoreactive as well as GABA-like immunoreactive axon terminals. Almost all of the synapses appeared to be asymmetrical. Possible functional activity of interactions among the enkephalinergic, GABAergic, and serotonergic neuronal elements in the dorsal raphe nucleus are discussed.  相似文献   

10.
In mammals, the suprachiasmatic nucleus is critical for the generation of circadian rhythms and their entrainment to environmental cues. In the rat, the ventrolateral aspect of the suprachiasmatic nucleus receives a robust retinal input. This region also exhibits the most intense immunolabeling for the low-affinity nerve growth factor receptor in the forebrain. Our study was aimed at identifying the sources of this low-affinity nerve growth factor receptor immunoreactivity using immunohistochemistry combined with retrograde tract-tracing, and orbital enucleation. To determine the origin of the low-affinity nerve growth factor receptor immunoreactivity from sources extrinsic to the suprachiasmatic nucleus, unilateral injections of the retrograde tracer, Fluorogold, were made into the suprachiasmatic nucleus. Retrogradely labeled neurons that were also immunopositive for the low-affinity nerve growth factor receptor were found in both the basal forebrain and the retina. In the basal forebrain, such cells were found throughout its rostrocaudal extent, with the majority also being immunoreactive for the cholinergic marker, choline acetyltransferase. In the retina, cells retrogradely labeled with Fluorogold that were immunoreactive for low-affinity nerve growth factor receptor were located in the ganglion cell layer. Orbital enucleations were performed to confirm the findings observed following retrograde labeling in the retina. Unilateral orbital enucleations resulted in a significant reduction in low-affinity nerve growth factor receptor immunoreactivity in the contralateral suprachiasmatic nucleus compared to that seen on the ipsilateral side when examined one week post-surgery. Bilateral enucleations resulted in an equal decrease on both sides of the suprachiasmatic nucleus. Similar low-affinity nerve growth factor-like immunoreactivity was seen in the suprachiasmatic nucleus even two to four weeks after bilateral enucleations. Taken together, these findings suggest that low-affinity nerve growth factor receptors in the suprachiasmatic nucleus derive from multiple sources. While some receptors may be intrinsic to suprachiasmatic nucleus neurons, most appear to be of extrinsic origin and are located on axon terminals of basal forebrain cholinergic neurons and retinal ganglion cells.  相似文献   

11.
Expression of immediate early genes, including fos-like and jun-like genes, in the suprachiasmatic nucleus is believed to be part of the mechanism for photic entrainment of circadian rhythms to the environmental light/dark cycle. However, the effects of a light stimulus on activating protein-1 (AP-1) complexes in the suprachiasmatic nucleus remain unclear. The photic regulation of AP-1 DNA-binding activity and composition in the rat suprachiasmatic nucleus was evaluated by using an electrophoretic mobility shift assay. A light pulse given during subjective night induced an increase in AP-1 binding activity when either nuclear or whole-cell extracts from suprachiasmatic nuclei were used. Under constant dark conditions, proteins that are predominant components of AP-1 complexes are Fra-2 and Jun-D. Under light stimulation, c-Fos and Jun-B consistently increased, as expected, but this was also the case for Fra-2, Jun-D, and c-Jun, although to a lesser extent. An immunocytochemical study of the Fra-2 expression pattern demonstrated the presence of the protein in the ventrolateral as well as in the dorsomedial subdivisions of the suprachiasmatic nucleus. Light regulation of Fra-2 immunoreactivity, however, appeared to be restricted to the ventrolateral subdivision. It is concluded that light may be acting both by increasing constitutive AP-1 complexes and by inducing the expression of specific complexes.  相似文献   

12.
The blind mole rat, Spalax, is a subterranean rodent with atrophied, subcutaneous eyes. Whereas most of the visual system is highly degenerated, the retino-hypothalamic pathway in this species has remained intact. Although Spalax is considered to be visually blind, circadian locomotor rhythms are entrained by the light/dark cycle. In the present study we used anterograde tracing techniques to demonstrate retinal afferents to the suprachiasmatic nucleus (SCN) and immunohistochemistry to examine the distribution of neuropeptides that are known to be involved in the regulation or expression of circadian rhythmicity. Based on the localization of retinal afferents and neuropeptides, the SCN can be divided into two subdivisions. The ventral region, which receives retinal afferents, also contains vasoactive intestinal polypeptide (VIP)-containing neurons, and fibers that are immunopositive to neuropeptide Y (NPY) and serotonin (5-HT). The dorsal region contains vasopressinergic neurons, but this latter cell population is extremely sparse compared to that described in other rodents. The dorsal region is also characterized by numerous VIP-immunoreactive fibers. The presence of NPY and 5-HT fibers suggests that the SCN receives afferent projections from the intergeniculate leaflet and from the raphe nuclei, respectively. These neuroanatomical results, together with previous studies of behavior, visual tract tracing, and immediate early gene expression, confirm that an endogenous clock and the capacity for light entrainment of circadian rhythms are conserved in the blind mole rat.  相似文献   

13.
The effects of the serotonin agonist, quipazine, on the induction of c-fos in the suprachiasmatic nucleus of the rat was examined at different times of the 24 h cycle. Quipazine administered at night induced Fos production in a dose dependent manner (1, 3, 10, 30 mumol/kg) in the ventrolateral portion of the suprachiasmatic nucleus at ZT18. Administration of the highest dose at other times resulted in c-fos induction at ZT15 but not at other times of the day or subjective day examined (CT6 and ZT12). When compared to the effects of light pulses (2 lux/1 min), quipazine only caused c-fos induction at times when light caused induction. Our results support a role of serotonergic pathways in the transmission or modulation of photic information from the retina to the suprachiasmatic nucleus of the rat.  相似文献   

14.
With the advent of combinatorial chemistry a new paradigm is evolving in the field of drug discovery. The approach is based on an integration of chemistry, high-throughput screening and automation engineering. The chemistry arm is usually based on solid-phase synthesis technology as the preferred approach to library construction. One of the most powerful of the solid-phase methods is encoded split synthesis, in which the reaction history experience by each polymeric bead is unambiguously recorded. This split-and-pool approach, employing chemically robust tags, was used to construct a 85,000-membered dihydrobenzopyran library.  相似文献   

15.
Whether or not a representative sample of the nasopharyngeal microflora can be obtained by introducing a cotton swab through the nasal cavity has been evaluated. Also, a correlation between these results and those achieved from the middle ear effusions, has been searched. Ninety adenoidectomy-pending children, fifty of whom also presented otitis media with effusion, were included in the study. The research showed that there were a coincidence (p < 0.001) among the results obtained from the nasal cotton swab, those obtained from cultures of adenoid biopsies and the middle ear effusions.  相似文献   

16.
We report the results of sclerotherapy in 20 patients with bleeding gastric varices due to hepatic schistosomiasis. In an endemic area, patients with hepatic schistosomiasis, and bleeding gastric varices seen on endoscopy to be inferior extension of esophageal varices, were treated with emergency endoscopic injection just proximal to the cardia. Hemostasis was achieved in 17. Obliteration of varices was achieved in all patients with sclerotherapy, combined with surgery. Thirteen patients who had not been operated on in the past and consented to surgery underwent esophagogastric devascularization with splenectomy. Surgery was carried out as an emergency in the three patients who did not respond to sclerotherapy and electively in 10 patients after control of bleeding. After surgery, sclerotherapy was required for remnant varices. One patient with Child-Pugh grade C cirrhosis died of hepatic encephalopathy after control of the bleed. During a median follow-up of 9 months (range, 1-25 months), recurrence of bleeding in one patient and recurrent varices in two others were controlled with sclerotherapy. One patient had a fatal hemorrhage at home. We conclude that sclerotherapy effectively controls acutely bleeding type 1 gastric varices. Combined with esophagogastric devascularization and splenectomy, long-term results may be encouraging in patients with hepatic schistosomiasis.  相似文献   

17.
Suprachiasmatic nuclei (SCN) from hypothalami of postnatal rats were maintained for 18-39 days in vitro as organotypic slice explants. Neuronal subtypes containing vasopressin (VP), vasoactive intestinal polypeptide (VIP), gastrin releasing hormone (GRP), and GABA were immunocytochemically identifiable in these cultures. In situ hybridization histochemistry was compatible with these SCN slice explant cultures, and mRNA encoding for VP was detected bilaterally within these nuclei. After 18 days in vitro, both VP mRNA and VP immunoreactivity increased from levels present on postnatal days 4 (the earliest age from which the explanted tissue was derived) to levels typical of adult SCNs. In contrast, the GRP expression remained low, characteristic of early postnatal animals and far lower than adult levels. This suggests that the developmental cues or programs necessary for enhanced VP expression are maintained in these cultures, while those affecting GRP expression are absent or inhibited. VIP-containing neurons were numerous in the cultures. Culture slices appeared healthy, and similar numbers and distributions of identifiable neurons within the SCN were observed, whether or not the slices were grown in the presence of serum. EM analysis revealed that the SCN in vitro is composed of tightly packed neurons, processes, and abundant synapses containing both clear and dense core vesicles, closely resembling the SCN in vivo. Vasopressinergic neuronal somata contained extensive Golgi systems and labeled secretory granules, the latter organelle being present also within processes and synaptic terminals. GABA-immunopositive processes and synaptic profiles were abundant, with labeling occurring particularly over secretory vesicles and mitochondria. This slice culture system effectively maintained much of the intrinsic organization and cellular components of the SCN for long periods in vitro and should be an excellent model system for studying the intrinsic molecular mechanisms and extrinsic cues which regulate neuronal phenotype in this circadian pacemaker.  相似文献   

18.
Neuroanatomic, morphometric, immunocytochemical, neurobiochemical and clinical data support the hypothesis that the suprachiasmatic nucleus of the hypothalamus might be the initial site of migraine attacks. The prodromal phase of a migraine attack could be considered a syndrome of functional suprachiasmatic nucleus insufficiency, and other phases a reactive denervation hypersensitivity with the affection of the visual, nociceptive, antinociceptive and cranial vasomotor system.  相似文献   

19.
Brainerd and Reyna (1998, this issue) have described fuzzy-trace theory as a basic-processing theory, emphasizing age differences in children's disposition to use verbatim versus gist representations. The theoretical climate of the 1980's, when fuzzy-trace theory was first formulated, is described. Fuzzy-trace theory integrated new ideas about how cognitive development was viewed into a coherent framework, which only gradually gained acceptance as critical aspects of the theory were confirmed, counterintuitive findings were predicted and demonstrated, and other researchers began applying the theory. Fuzzy-trace theory converges with other contemporary theoretical accounts in raising the general issue of the relation between two developing representational systems and is consistent with the idea that immature (a bias toward verbatim encoding) and mature (a bias toward gist encoding) have both advantages and disadvantages at different times in development. By integrating the theory with ideas from social-contextual perspectives, the theory may have a greater impact in the future for issues of social significance.  相似文献   

20.
In both rodent and primate in vivo models, cholecystokininB (CCKB) antagonists such as PD134,308 have anxiolytic effects that may involve the potentiation of GABAergic transmission. We have investigated this interaction using exogenous application of GABA and whole cell patch recording techniques in neurons of the nucleus of the solitary tract (NTS) in brainstem slice preparations. In the presence of PD143,308 the magnitude of the GABA-evoked decrease in membrane input resistance was enhanced by 41.2 +/- 3.1% and the duration of the response was prolonged by 34.8 +/- 2.2%. Also, PD134, 308 potentiated glycine-evoked decreases in membrane input resistance, increasing the amplitude of the response by 62.8 +/- 4. 85 and prolonging the duration of the response by 23.5 +/- 3.6%. The effect of PD134,308 persisted in the presence of tetrodotoxin, after reversal of the transmembrane gradient of chloride ions and under conditions of exaggerated GABAA receptor desensitization. Our results demonstrate that at least part of the functional link between PD134,308 and the GABAA response occurs postsynaptically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号