共查询到20条相似文献,搜索用时 15 毫秒
1.
硫锂电池具有比能高达1675 mAh g?1、价格低廉、环保等优点,是一种具有良好应用前景的二次电池.但由于放电过程中多硫化物溶解产生的穿梭效应、硫的绝缘和硫电极的体积膨胀等原因导致锂硫电池的循环稳定性还不能满足工业化要求.石墨烯具有优异的导电性、超大的比表面积、良好的机械柔韧性和热化学稳定性,因此石墨烯及其衍生物成为... 相似文献
2.
锂硫电池因理论能量密度高、生产成本低和环境友好等优点被认为是最有前途的下一代电化学储能装置之一。然而,硫和硫化锂的低导电性、严重的穿梭效应和缓慢的反应动力学等问题阻碍了锂硫电池的大规模商业化应用。炭材料因高比表面积,良好导电性与结构多样性而备受关注,然而非极性炭材料难以与极性多硫化物紧密结合,导致活性材料大量损失和严重的穿梭效应。金属氧化物具有极性强和丰富吸附位点的优点,将过渡金属氧化物与炭材料结合,有助于增强对多硫化物的化学吸附和电化学反应活性。本文首先介绍了锂硫电池的基本原理和存在的主要问题,然后讨论了近年来过渡金属氧化物/炭复合材料在合成方法和结构设计(1D,2D,3D)方面的研究进展。此外,详细介绍了异质结构设计、空位工程和晶面调控策略的代表性工作并讨论了其机理。最后,对过渡金属氧化物/炭复合材料用于锂硫电池中的发展进行了总结和展望。 相似文献
3.
为了抑制锂硫电池的穿梭效应,改善锂硫电池的电化学性能,尝试以二硫苏糖醇(DTT)为剪切剂,对高阶多硫化物进行剪切以阻止其溶解。将二硫苏糖醇(DTT)掺入多壁碳纳米管(MWCNTs)纸中,制得DTT夹层,将该DTT夹层置于锂硫扣式半电池正极片和隔膜之间,正极片的载硫面密度约为2 mg/cm2。SEM观察结果证实DTT均匀分散在MWCNTs纸的表面和空隙中。电化学测试结果表明引入DTT夹层结构的锂硫电池在0.05C倍率首次放电比容量达到1 288 mAh/g,首次库伦效率接近100%,在0.5C、2C、4C倍率下充放电时的比容量分别达到650mAh/g、600mAh/g、410mAh/g。DTT夹层结构的引入可有效剪切高阶多硫化物并阻止其迁移到锂负极,从而抑制穿梭效应,改善锂硫电池的循环稳定性和库伦效率。 相似文献
4.
采用氧化石墨烯(grapheneoxide,GO)作为制备石墨烯的前驱体,通过液相还原自组装过程与硫纳米颗粒进行复合,获得了高性能的还原氧化石墨烯/硫(r GO/S)复合正极材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱、X射线光电子能谱分析(XPS)等对材料微观形貌与结构进行表征。结果表明:硫纳米颗粒均匀分布在石墨烯片层间,并且硫纳米颗粒被石墨烯片层有效地封装,硫在35-r GO/S复合物中的质量分数高达83.6%。该35-r GO/S复合正极在0.2C电流密度下初始放电容量可达1197.3mAh·g^-1,经过200次循环后容量仍保持在730mAh·g^-1左右,表现出优异的循环性能。 相似文献
5.
6.
7.
为了抑制锂硫电池的“穿梭效应”,改善锂硫电池的电化学性能。正极片掺杂羟基化多壁碳纳米管(MWCNTs—OH),利用亲水性羟基官能团对多硫化物的吸附作用,阻止多硫化物的扩散,增加有效物质的利用率,抑制穿梭效应的产生,提高锂硫电池的容量和循环性能。利用TEM、SEM和EDS等进行结构和性能表征。电化学测试结果表明,掺杂MWCNTs—OH的锂硫电池,放电容量明显提高。在0.1 C倍率,首次放电比容量达到1 281 mAh/g,首次库伦效率接近96.7%,循环10次后比容量还保持在882 mAh/g。在0.2 C、0.5 C和1 C倍率下充放电时,电池首次放电比容量分别达到794.2 mAh/g、712.2 mAh/g和557.3 mAh/g,显示出极佳的倍率性。 相似文献
8.
9.
二硫苏糖醇(DTT)作为剪切剂,对高阶多硫化物进行剪切阻止其溶解,抑制穿梭效应的产生。以二硫苏糖醇(DTT)和多壁碳纳米管(MWCNTs)复合薄膜作为锂硫电池正极片与隔膜之间的阻隔层,抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高锂硫电池的容量和循环性能。利用透射电子显微镜(TEM)和扫描电镜(SEM)等进行结构和性能的表征。电化学测试结果表明,含DTT/MWCNTs阻隔层的锂硫电池在0.2 C倍率首次放电比容量达到1 674 mAh/g,活性物质的利用率达到99.9%。在1 C充放电300次循环后,容量依然保持在780 mAh/g,是首次放电容量1 094 mAh/g的71.3%,且库伦效率保持在95.3%以上。在5 C和10 C倍率下充放电,电池比容量分别达到597和214 mAh/g。 相似文献
10.
11.
《新型炭材料》2021,(4)
由于相对较低的能量密度,商用锂离子电池(LIB)难以满足便携式电子和电动汽车对储能设备能量密度日益增长的需求。锂(Li)金属具有高理论比容量(3 860 mAh g~(-1))和低的密度(0.59 g cm~(-3)),被认为是下一代高能密度锂电池最具前途的负极之一,如Li-S和Li-O_2电池。然而,由于固态电解质界面层的不稳定,导致锂枝晶生长不可控和库伦效率低等问题,限制了锂金属电池的实际应用。石墨烯基材料(GBMs)具有高比表面积、可调节的孔结构和表面化学特性,已被证明可以显著解决上述问题。本文综述了利用石墨烯基材料来保护锂金属负极的各种策略,并详细讨论了在锂金属保护中具有不同功能和作用的石墨烯基纳米材料的合理设计。文中还讨论了石墨烯基纳米材料用于锂金属负极中未来发展面临的挑战和可能的解决方案。 相似文献
12.
《新型炭材料》2020,(1)
锂硫电池具有很高的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是最具前景的新型电池之一。石墨烯具有优良的导电性和电化学性能,具有开阔的负载硫的表面和空间,是导电性差的硫黄和硫化锂的良好载体,为锂硫电池正极材料提供了新的研发平台。本文介绍了近年来石墨烯及其复合材料应用于锂硫电池中的研究进展,包括石墨烯或氧化石墨烯负载硫、杂原子掺杂石墨烯负载硫、石墨烯三维网格负载硫和石墨烯-多孔炭复合炭材料负载硫等4种石墨烯基-硫正极材料,概述了其锂硫电池的比容量、倍率性能和循环寿命等性能指标。从石墨烯基锂硫电池正极材料的设计和合成的角度,总结了不同微结构特征的石墨烯及其复合材料组装成锂硫电池的性能特点,并分析了材料组成和微结构对电池性能的影响机制。在总结的基础上展望了石墨烯应用于锂硫电池的发展方向。 相似文献
13.
《新型炭材料》2017,(4)
采用一步硬模板法炭化酚醛树脂和葡萄糖酸镁制备得到具有大表面积和层次化结构的微孔-中孔炭材料(HMMC)。在炭化过程中,葡萄糖酸镁分解形成纳米氧化镁(MgO)可以作为硬模板。制备得到的HMMC具有高的比表面积(1560m~2·g~(-1)),大的孔容(2.6cm~3·g~(-1)),可以实现较高硫的负载量,并可以提供硫体积膨胀的空间。此外,相互连通的孔结构和炭骨架也能够提供快速的电子和锂离子的传输通道。因此,与硫复合后得到的碳-硫杂化材料(HMMC-S)在0.3C电流密度下,初始放电容量高达939mAh·g~(-1),经150周循环后容量仍有731mAh·g~(-1),每周的容量损失率仅为0.15%。在较高的电流密度2C下,其容量仍可达626mAh·g~(-1),表现出优异的倍率性能和长循环稳定性。 相似文献
14.
15.
16.
在能源危机与环境问题日益凸显的背景下,电化学储能技术得到了迅速发展。在“超越锂”储能领域的竞争者中,锂硫电池(Li-S)因其具有高理论比容量、高质量能量密度并且环境友好、价格低廉等优点,成为最有前途的新储能技术。但是,锂硫电池的发展仍存在一些瓶颈问题需要解决,例如正极材料导电性能差、多硫化物穿梭效应及在充放电过程中电极体积膨胀等。作为锂硫电池的关键组成部分,电极和隔膜材料的设计和制备对解决这些问题及电池整体性能提升起到了重要的作用。金属有机骨架(MOFs)及衍生的复合材料作为锂硫电池电极或隔膜修饰材料,具有质量轻、电子和离子传导性好、孔道丰富和活性位点均匀分布等优势。此外,这类复合材料还具备形貌和组分可控、来源丰富和孔径可调等特性,从而便于机制研究。本文全面介绍了锂硫电池组成、工作原理并综述了近几年MOFs及衍生复合材料在锂硫电池中的研究进展,重点讨论了其在正极材料和隔膜材料中的应用,并对未来该材料在锂硫电池研究方向上的前景和突破进行了展望。 相似文献
17.
以经活化处理的石墨烯(AG)为主体材料, 通过化学还原法制备了石墨烯负载硫的复合正极材料AG/S。SEM、EDX和TEM测试结果表明经活化处理后形成手风琴结构的AG, 有利于电解液的浸润; 活性物质硫均匀地负载在AG表面, 同时沉积在AG的层间。电化学测试表明: 在400 mA/g电流密度下, AG/S复合正极材料首次放电比容量为1452.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在909.7 mAh/g; 在1000 mA/g电流密度下, AG/S复合材料首次放电比容量为1309.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在717.1 mAh/g。AG/S复合正极材料的倍率性能、库仑效率和循环性能优异, 这得益于小尺寸的硫在材料中均匀分布, 活化石墨烯优良的导电性以及其结构对硫的固化作用。 相似文献
18.
19.
锂硫电池中氧化还原反应涉及复杂的多相转化过程,对其性能至关重要.催化转换是缓解穿梭效应的有效策略,但单组分催化剂在双向氧化还原过程中并不能充分发挥作用.为此,我们制备了一维ZnO@NiO核-壳纳米带(CNBs),通过p-n结界面来解决这些问题.自发内置电场(BIEF)诱导界面电荷重新分配,促进了ZnO和NiO之间的电荷和多硫化物的转移.适度的吸附能和多硫化物转化能垒的降低进一步加速了硫的双向转化.ZnO@NiOCNBs阴极在0.1C下的放电容量为1525.5mAhg-1,在2C下循环1000次后,保持了73.60%的容量保持率,相当于每循环损失0.026%的容量.本研究证明了BIEF和异质结构的结合促进了多硫化物的转化,为调控多硫化物氧化还原反应提供了新策略. 相似文献
20.
锂氧气电池由于其极高的能量密度被认为是一种很有前途的储能系统。二氧化锰基材料被认为是锂空气电池阴极的低成本且高效的催化剂。在本研究中,通过水热法合成了不同长度的α-MnO_2纳米线并对其在锂氧气电池中的电化学性能进行了研究。X射线衍射和场发射扫描电镜证实了α-MnO_2的形成。由α-MnO_2纳米线组装的锂氧气电池在电流密度为100 mA/g、放电截止电压为2 V时,以正极总质量为计算标准,放电容量高达12000 mAh/g。当限定放电容量为500 mAh/g时,电池能够有效循环超过40次,显现出良好的循环稳定性。这些结果表明,α-MnO_2纳米线可以作为锂氧气电池的催化剂。 相似文献