首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着对清洁能源需求的不断增加,二次离子电池已成为研究热点,开发具有高比容量的负极/正极材料尤为重要.合金化反应机制的硅、磷、锗、锡负极和硫正极材料存在较高的体积膨胀率,其中磷和硫较差的导电性以及可溶性中间产物的穿梭效应限制了实际应用.沉积/溶解机制的金属负极枝晶问题使其不能单独作为负极材料使用.炭材料由于其来源广泛以及...  相似文献   

2.
锂硫电池具有很高的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是最具前景的新型电池之一。石墨烯具有优良的导电性和电化学性能,具有开阔的负载硫的表面和空间,是导电性差的硫黄和硫化锂的良好载体,为锂硫电池正极材料提供了新的研发平台。本文介绍了近年来石墨烯及其复合材料应用于锂硫电池中的研究进展,包括石墨烯或氧化石墨烯负载硫、杂原子掺杂石墨烯负载硫、石墨烯三维网格负载硫和石墨烯-多孔炭复合炭材料负载硫等4种石墨烯基-硫正极材料,概述了其锂硫电池的比容量、倍率性能和循环寿命等性能指标。从石墨烯基锂硫电池正极材料的设计和合成的角度,总结了不同微结构特征的石墨烯及其复合材料组装成锂硫电池的性能特点,并分析了材料组成和微结构对电池性能的影响机制。在总结的基础上展望了石墨烯应用于锂硫电池的发展方向。  相似文献   

3.
高能量密度的电极活性材料是提高电芯能量密度的关键。提高锂离子电池能量密度的途径主要包括开发高比容量正负极材料和高放电电压平台正极材料。本研究综述了几种典型的具有高能量密度锂离子电池正、负极材料的最新研究进展,包括多电子反应、富锂、聚阴离子和镍锰酸锂正极材料以及硬碳、硅基和锡基负极材料,介绍了各种材料的特点和电化学性能,重点阐述了制备这些材料的典型方法和进展,并展望了高能量密度锂离子电池的发展方向和应用前景。  相似文献   

4.
钠离子电池(SIBs)因其成本低、安全性高等优势引起了愈加广泛的关注与研究。在已报道的SIBs负极材料中,磷由于理论容量极高被认为是最具应用前景的负极材料之一。然而磷的电导率低,且在充放电过程中会发生体积膨胀,极大地影响了其倍率性能和循环稳定性。将磷与锗、锡、铜等金属结合形成金属磷化物可有效提高其导电性,并显著改善磷基负极材料的倍率性能和循环性能。本文主要综述了金属磷化物及其与碳纳米管、石墨烯等复合材料作为SIBs负极的最新研究进展,总结了目前金属磷化物SIBs负极材料存在的问题,比如实际容量偏低、储钠机制研究不够深入等;提出了相应的解决方法和手段,例如复合材料设计和构筑、表面修饰、尺寸形貌调控和先进原位表征手段等;并对金属磷化物SIBs负极材料的发展前景进行了展望。  相似文献   

5.
作为锂离子电池和超级电容器的结合,锂离子电容器由于兼备电池和电容器的优点而受到了广泛关注。然而因其正极双电层电容行为的储能机理,锂离子电容器的能量特性受到了较大的限制。因此,为了从根本上增强锂离子电容器正极材料性能,本研究提出了双离子电容器的储能机理。以柠檬酸钾/镁/铁为原料,合成了兼备石墨质结构与层次化多孔结构的石墨质多孔炭,并以其为正极材料,实现了兼具锂离子电容器正极离子吸附行为与双离子电池正极阴离子插层行为的双离子电容储能。由于石墨质多孔炭结构中石墨质结构在高电位下由阴离子插层反应贡献的额外平台容量以及对于材料导电性的增强,石墨质多孔炭正极材料的能量特性明显超过多孔炭及人造石墨正极,实现了从储能机理的层面的器件性能增强。  相似文献   

6.
碳纳米管膜具有丰富的孔道结构、大比表面积、高导电性及优异的柔性,可通过负载硫形成柔性碳纳米管/硫复合膜,用于锂硫电池正极材料。为了提高锂硫电池的循环稳定性,抑制“穿梭效应”,通过浮动催化化学气相沉积法(FCCVD)分别制备了氮掺杂和硼掺杂的碳纳米管膜(N-CNT膜和B-CNT膜),然后通过浸渍工艺负载硫后得到掺杂型碳纳米管/硫复合柔性自支撑正极膜。微观表征显示:复合膜中硫和碳纳米管在纳米尺度复合均匀。复合膜均具有良好导电性:CNT正极电导率为4.62S/m, N-CNT正极电导率为0.86S/m, B-CNT正极电导率为1.29S/m。作为锂硫电池正极,B-CNT正极表现出最佳性能:在0.2C倍率下首次放电容量达到1197.3mAh/g, 200次循环后容量保持在950.2mAh/g, 1C倍率下放电比容量仍旧保持在615.5mAh/g。分析认为:碳纳米管良好的导电性和丰富的孔结构同时提供了高效的电子和离子传输通道;硼原子掺杂向碳纳米管引入极性,增强了碳纳米管网络对聚硫离子的吸附作用,抑制了“穿梭效应”。可为高比容、高循环稳定性锂硫电池正极材料研发提供解决思路。  相似文献   

7.
目前锂硫电池的应用仍受活性物质硫和放电产物的绝缘性、中间产物聚硫化物的穿梭以及硫正极在循环过程中较大的体积变化等问题限制。本文以导电中孔炭微球(MCM)为载体材料,将极性的MoS_2均匀地负载于MCM框架中,作为高效的硫正极载体材料。结果表明,与MCM/S正极相比,添加了MoS_2的MCM/MoS_2/S复合正极表现出更高的容量、更好的循环稳定性和倍率性能,其中添加12.4 wt.%的MoS_2表现最优异的电化学性能。此外,MoS_2在硫正极的工作电压窗口内具有电化学活性,可以提供附加容量,且能在醚系电解液中保持稳定的放电容量。当用MoS_2替代部分非电化学活性的载体时,可以提高硫正极的整体容量。这种利用电化学活性的载体提高电极整体容量的思路为进一步提高硫正极的电化学性能提供了参考。  相似文献   

8.
新一代固溶体富锂正极材料xLi2MnO3.(1-x)LiMO2(M=Co,Fe,Ni1/2Mn1/2…)具有高比容量、优秀的循环能力以及新的电化学充放电机制,可能被用做新型高比能量锂离子电池正极材料.本文介绍了富锂正极材料的结构、合成方法、电化学性能研究,探讨了影响其电化学性能的若干因素.并对其进行的各种改性研究进行了概述,分析总结了不同富锂正极材料所具有的特性和发展趋势.  相似文献   

9.
利用石墨烯作为新型的阻挡层,设计并制备出具有核壳结构的石墨烯包覆多孔炭/硫复合材料,抑制锂硫电池中的"穿梭效应",以提高正极材料的循环性能。该结构利用多孔炭材料作为储存硫的载体,而石墨烯作为阻挡层可以限制充放电过程中形成的多硫化物向体相电解液中的扩散,从而实现对正极材料的容量和循环性能的提高。此外,提出一种简便的组装方法来实现石墨烯在多孔炭/硫复合材料表面的包覆。利用氧化石墨烯在液相还原过程中官能团的去除来降低亲水性,从而使其自发地包覆在不亲水的多孔炭/硫复合材料表面,形成石墨烯包覆的核壳结构。  相似文献   

10.
Co类普鲁士蓝(CoPBA)作为令人瞩目的超级电容器阳极材料拥有高比容量和优异的循环稳定性,但较差的电子导电性限制了其倍率性能。利用ZIF-67作为前驱体合成了Co类普鲁士蓝/多壁碳纳米管(CoPBA/MWCNT)复合材料,并使用XRD、SEM和TEM对材料的结构和形貌进行表征。在三电极体系中,测得CoPBA/MWCNT电极在电流密度为1 A·g-1时电容提高到312 F·g-1。制备的CoPBA/MWCNT电极有利于提高材料电导率和机械稳定性,从而获得更高的电化学性能。将CoPBA/MWCNT正极和活性炭(AC)负极组装为非对称电池,测得5 000圈循环后容量保留率为83.1%,循环稳定性优异。  相似文献   

11.
<正>锂离子电池与铅酸、镍镉、镍氢等电池相比,由于其较高的能量密度、较长的使用寿命、较小的体积、无记忆效应等特点,成为现今能源领域研究的热点之一。负极材料是锂离子电池的关键组件之一,其作为锂离子的受体,在充放电过程中实现锂离子的嵌入和脱出。因此,负极材料的好坏直接影响锂离子电池的整体性能。目前,商用锂离子电池负极材料广泛使用石墨及改性石墨,但是其理论容量仅为372m Ah/g,大大制约了高能量动力电池的发展。IV族元素(硅,锗,锡)基负极材料  相似文献   

12.
随着固态电池、 无负极高比能电池、 锂基新型电池如锂-氧/锂-硫电池体系、 高比能量锂一次电池的发展,锂金属电极材料的研究已经从将其单纯作为液态电池的参比或对电极材料,慢慢地转变为作为更重要的高比容量负极材料,但考虑到锂的安全性以及其自身的体积效应,安全性更高的锂合金电极材料的研究逐渐成为高性能储能器件构筑设计与研究关...  相似文献   

13.
硅基负极材料因具有较高的理论储锂容量,将替代传统的石墨负极材料成为下一代锂离子电池最有前景的负极材料之一。然而,硅作为负极材料体积膨胀率(可达到300%)大、导电率低、易被电解液分解产生的HF腐蚀,这些缺点限制了其在商业应用中的发展。碳具有稳定性高、导电性好、价格低、来源广等优点,但其理论储锂容量较低,仅约为硅的1/10。为解决锂离子电池硅材料存在的问题,目前主要采用将硅与碳进行复合的办法,制备出储电量高、导电性好、循环性能优异的硅-碳复合负极材料。重点从硅碳复合结构和制备方法两个方面阐述了硅-碳复合负极材料的研究进展,认为"鸡蛋"结构能够有效地提高循环性能和安全性能,但是目前仍然不能够规模化生产。最后提出研究发展思路,应用胶体颗粒共凝胶法设计制备了一种特殊的硅-碳复合核壳结构。  相似文献   

14.
随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO_4)和三元材料(Li(Ni_xCo_yMn_(1-x-y)) O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg~(-1)。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4 200 mA h·g~(-1)的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性能纳米硅/碳负极材料,如3D多孔纳米硅/碳材料、中空核-壳纳米硅/碳材料等。本文先阐述了硅锂合金的电化学反应机理与容量衰减的原因,以及纳米硅的制备方法,然后从表面包覆、结构制备、掺杂、MOFs改性等方面对硅/碳复合材料的常见修饰方法进行了综述,并进一步分析了中空核-壳结构、多孔结构等在提高电化学性能上的优势。最后,本文总结了纳米硅/碳作为负极材料的优点与当前遇到的问题,归纳并分析了不同包覆材料、不同包覆方法和不同离子掺杂带来的性能差异及原因,提出未来纳米硅/碳产业化道路上的关键突破点,并展望了其在纯电动汽车领域的应用前景。  相似文献   

15.
为了提高MoS2作为Li离子电池负极材料整体的导电性和稳定性,将纳米化的MoS2与其它导电性好的材料进行复合,通过水热法在导电基底不锈钢网(Stainless steel net, SS)上原位合成了一层MoS2纳米花,制备了无粘结剂的自支撑结构的SS@MoS2负极材料。纳米花状的MoS2和导电性优异的SS提高了电子和Li离子的扩散速率,同时改善了电极的反应动力学。当作为Li离子电池负极材料时,SS@MoS2电极表现出优异的储Li性能,特别是具有显著的大倍率充放电性能,即在1 000 mA/g的大电流密度下循环600次,比容量仍保持在862.1 mA·h/g。   相似文献   

16.
磷因理论储锂储钠比容量高、倍率性能好,被认为是一种极具发展潜力的离子电池负极材料。近几年磷基材料在锂离子、钠离子电池负极上的应用研究取得了实质性的进展。综述了磷基材料作为离子电池负极材料的研究进展,包括磷单质、磷/碳复合物及金属磷化物;分析了磷基材料作为离子电池负极材料的特点及存在的问题,并提出对其进行无定形包覆和非晶化处理是解决问题的最佳手段;简述了电解液添加剂氟代碳酸乙烯酯对磷基负极材料电化学性能的影响;展望了磷基负极材料在能源方面的发展前景。  相似文献   

17.
以配合物为模板和镍源,蔗糖为碳源,通过一步高温法获得片状硫化镍/炭(Ni_3S_2/C)材料。采用XRD,SEM,FT-IR,XPS对制备的材料进行表征。以此材料作为锂硫电池正极活性物质的载体并进行充放电等测试,结果表明,在0.2C的倍率下,硫电极首次放电容量为1392.7mAh/g,循环100次后的放电容量仍然保持有1009mAh/g,表现出较高的放电比容量和良好的循环稳定性。进一步研究表明Ni_3S_2在改善硫电极性能和抑制穿梭效应发挥重要作用。  相似文献   

18.
硅基材料理论容量高、电位低、自然资源丰富,是最理想的锂离子电池负极材料。但是硅基负极在锂化和脱锂过程中巨大的体积变化,导致了硅基负极的循环稳定性与导电性差,阻碍了其实际应用。硅碳复合材料可将碳材料的高导电性和机械性能与硅基材料的高容量和低电位的优势相结合。综述了硅碳负极材料的主要制备方法,总结了硅碳复合材料的结构设计,并对未来碳硅材料的研究工作进行了展望。  相似文献   

19.
硅作为锂电池负极材料虽然具有非常高的理论比容量(3600mAh·g-1),但因其充过电过程中严重的体积效应而导致电极循环性能差,同时硅为半导体材料,导电性较差。本论文以泡沫镍材料为基体,通过水热、氢化还原以及磁控溅射等制备工艺制备了具有核壳结构的自支撑纳米线阵列的复合负极,纳米线阵列的结构设计可以有效释放硅膨胀时产生的内应力,抑制粉化现象。另外较大的比表面积还能有效增加Co/Si薄膜与电解液的接触面积,加快Li+在液/固相中的传输速率,降低电极的极化现象。在500mA·g-1电流密度下循环100次后Co/SiNWs的比容量为1260mAh·g-1,单圈容量衰减仅有0.02%。将电流密度提升至1000mA·g-1,500次反复充放电后依然有90.6%的容量留存。在高倍率下Co/Si NWs电极也有不俗的表现,4000mA·g-1下循环比容量达880mAh·g-1,当电流密度回到500mA·g-1时,容量可恢复至初始的93%。优异的电化学性能表明本文设计的硅基复合负极材料较好地克服了硅材料应用中的体积膨胀和导电性差的问题。  相似文献   

20.
硒化锡(SnSe、SnSe_2)因其特殊的层状晶体结构以及较高的导电性,有望成为锂/钠离子电池的负极材料。但是硒化锡负极在充放电过程中体积会反复变化,导致电极结构及表面SEI膜(电极与电解液界面)遭到破坏,使活性材料失去电接触,从而导致循环容量迅速衰减;此外,硒化锡转化反应中间产物Li_2Se/Na_2Se的导电性较差,阻碍了电荷的传输,从而影响了硒化锡电极的电化学反应活性。本文针对硒化锡电极在储锂/钠过程中存在的问题,总结了提升其电化学性能的手段,并概述了国内外学者从构建特殊纳米结构和复合结构等层面上采取的解决办法,揭示了其电化学存储机制以及能够获得的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号