共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
分析总结了煤体渗透率的3个主要影响因素--有效应力、温度和瓦斯压力,并结合煤体的力学特性建立了一个预测煤层瓦斯渗透率的BP神经网络模型。根据不同有效应力、不同温度和不同瓦斯压力条件下大量具有代表性的煤样渗透率数据来建立学习样本,并对该模型的精度进行了检验。该BP神经网络经过11 986次学习后精度满足要求,训练后BP神经网络模型所得预测结果的最大绝对误差为0.049×10-15 m2,最大相对误差为4.298%。根据所建立的BP神经网络模型得到的预测值与实测值吻合较好。 相似文献
10.
基于广义回归神经网络GRNN的矿井瓦斯含量预测 总被引:1,自引:0,他引:1
煤矿瓦斯涌出量和瓦斯突出受控于多种因素。如何根据各个影响因素预测计算煤层瓦斯含量是一个非常复杂的问题。近年来迅速发展起来的神经网络具有较高的非线性映射和并行处理能力。广义回归神经网络(GRNN)具有网络结构自适应确定、输出与初始权值无关等优良特性,能够逼近任意连续的非线性函数,可以处理系统内在的难以解析的规律。本文以某矿13-1煤层为研究对象,在分析影响煤层瓦斯含量的各种地质因素和量化定性因素的基础上,应用GRNN神经网络方法建立某矿13-1煤层瓦斯含量预测模型,以达到对井田未开采区域进行瓦斯含量预测的目的。 相似文献
11.
为提高预测模型的可靠性,实现对煤层未采区域瓦斯含量的精确预测,以山阳煤矿5#煤层为研究对象,进行未采区瓦斯含量的预测。运用瓦斯地质学和多元线性回归分析法,得出基岩厚度、煤层厚度和埋深是影响该矿瓦斯赋存的主要因素,并将其作为BP神经网络模型的输入端神经元,初步构建出瓦斯含量预测模型;结合地勘时期瓦斯钻孔的实际数据,进行网络训练,再对预测模型的可靠性进行检验。结果表明:该预测模型预测瓦斯含量,精度较高,效果较好,能满足工程要求。采用多元线性回归-BP神经网络可以对未开采区域煤层瓦斯含量进行准确预测,为矿井瓦斯灾害防治提供一定的参考依据。 相似文献
12.
为减少煤层瓦斯含量预测的误差并提高预测效率,先利用灰色关联分析量化指标,筛选主因,然后运用GA-BP预测含量的方法。采用Matlab构建模型,选取成庄矿3#煤层的含量与指标作为实验数据进行预测。从预测结果来看,这种预测模型平均相对误差为2.77%,预测其它预测模型精确,可以准确预测煤层瓦斯含量。 相似文献
13.
针对广东泥竹塘铁矿露天边坡稳定性问题,为了获得矿山的稳定露天边坡角,研究使用BP神经网络进行预测分析。在预测过程中,以边坡岩体质量系数、岩体综合抗压、抗拉强度、内聚力、结构面力学特性、边坡高度及岩体密度等7个指标为输入因子,综合国内矿山27组露天矿山现场数据,建立网络学习、训练样本库,从而实现泥竹塘铁矿稳定露天边坡角的预测。结果表明,露天边坡角的BP神经网络预测模型最大误差小于3%,训练输出误差较小,精度较高,得到的泥竹塘露天铁矿上盘最终边坡角的预测值为42.8°,上盘最终边坡角的预测值为40.1°。多年的生产实践表明,该预测成果与实际基本相符,可为今后类似工程提供参考。 相似文献
14.
15.
16.
17.