首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
矿山瓦斯突出与爆炸事故的预测预报是当前我国煤矿安全生产中急待解决的问题之一。引入BP神经网络的拟牛顿(Newton)优化算法,在保留空间实体相关和多种分布并存的前提下,讨论了建立拟牛顿优化算法BP神经网络瓦斯灾害预测预报模型的数学模型设计、网络结构设计和程序设计3个部分,并以济宁二号井为实例进行了测试。结果表明:该模型稳定、快速、预测精度高,能够较好地模拟矿山瓦斯突出与爆炸事故特征,对瓦斯灾害作出较准确的预测。  相似文献   

2.
以淮南矿区潘一矿13-1煤层为研究对象,确定了煤层埋深、煤层厚度、顶板岩性和构造是影响煤层瓦斯含量的主要因素;在分析勘探钻孔资料的基础上,利用RBF神经网络方法建立了瓦斯含量预测模型,结合实际数据,对预测模型进行训练和检验,预测结果表明,该模型比使用线性回归和BP神经网络模型预测能获得更高的精度,说明预测模型可靠.  相似文献   

3.
在分析湖南土朱矿5煤层煤与瓦斯突出资料的基础上,确定煤层瓦斯含量,瓦斯压力,煤的坚固性系数及瓦斯放散初速度为影响煤与瓦斯突出的主要因素,利用MATLAB软件,基于BP神经网络,建立了适合土朱矿的煤与瓦斯突出强度预测模型,并进行了实际检验,确定了模型的可行性,为指导土朱矿的安全生产提供了理论依据。  相似文献   

4.
为了高效、便捷地获取煤层瓦斯含量,设计了一种基于LM-BP神经网络的煤层瓦斯浓度预测方法。首先介绍了LM-BP神经网络的预测原理,然后建立了基于LM-BP神经网络煤层瓦斯预测模型,最后采用地勘钻孔的相关参数制作样本进行模型训练和预测,将设计的预测模型的性能与基于BP神经网络模型进行对比,结果表明,2种模型在预测准确率方面达到基本一致,都在90%以上,在收敛速度上基于LM-BP神经网络煤层瓦斯预测模型有明显优势。  相似文献   

5.
基于多元线性回归与BP神经网络的矿井瓦斯预测模型应用   总被引:1,自引:2,他引:1  
矿井瓦斯涌出量受众多因素的影响。经研究表明,煤层埋藏深度、煤层厚度、煤层瓦斯含量、煤层间距、日进度及日产量是影响瓦斯涌出的主要因素。利用多元线性回归和BP神经网络理论,分别对矿井瓦斯涌出量进行了预测,最后建立了多元线性回归与BP神经网络的组合预测模型。该模型兼顾了多元回归分析的非线性特性和神经网络的时序特性,通过具体的实例研究,对比了各种方法的预测结果。结果显示,组合预测的结果与实际有较高的拟合度,可靠性高。  相似文献   

6.
矿井瓦斯涌出量的灰色小波神经网络预测模型   总被引:1,自引:1,他引:1  
矿井瓦斯涌出量预测一直是煤矿生产过程中倍受关注的问题。它受众多因素的影响,而各因素之间的非线性关系错综复杂。近年来,许多的学者利用人工神经网络对非线性的对象建模预测,但是存在收敛速度慢,易陷入局部极小等缺点。本文将灰色理论引入小波神经网络模型中,其中灰色模型利用累加生成的新数据建模,突出趋势项影响,小波神经网络通过灰色模型的预测结果进行再预测,使得小波神经网络的非线性激励函数更加易于逼近,减小周期和随机成分,提高了涌出量预测精度,表明了该模型可靠性。  相似文献   

7.
基于灰色关联度BP神经网络预测煤层瓦斯含量   总被引:1,自引:3,他引:1  
以淮南矿区潘三矿13-1煤层为例,在分析潘三矿瓦斯地质资料的基础上,结合灰色关联度分析,确定煤层埋深、地质构造、煤层倾角、煤层厚度以及顶板岩性为影响煤层瓦斯含量的主要因素,建立瓦斯含量预测BP神经网络模型。对已建立的模型进行训练和检验,并预测煤层未开采区域瓦斯含量。结果表明:建立的预测模型能满足煤矿实际安全生产的要求,为矿井瓦斯灾害防治提供一定的参考依据。  相似文献   

8.
《煤矿开采》2017,(1):101-104
为有效预测煤体瓦斯渗透率,预警井下作业时瓦斯浓度变动,利用神经网络的自适应学习能力和模糊推理系统的经验知识建立自适应神经模糊推理系统(ANFIS)预测模型,并基于实验室数据将其预测结果与BP神经网络模型和支持向量机(SVM)模型的预测值作对比。研究结果表明:ANFIS模型的收敛速度快,预测值与实测值相符度高;在误差精度、训练速度和收敛性等方面,其性能优于其他两种模型,可通过有效应力、瓦斯压力、温度和抗压强度对瓦斯渗透率进行高精度的预测。  相似文献   

9.
基于改进BP神经网络的煤体瓦斯渗透率预测模型   总被引:6,自引:0,他引:6       下载免费PDF全文
尹光志  李铭辉  李文璞  曹偈  李星 《煤炭学报》2013,38(7):1179-1184
分析总结了煤体渗透率的3个主要影响因素--有效应力、温度和瓦斯压力,并结合煤体的力学特性建立了一个预测煤层瓦斯渗透率的BP神经网络模型。根据不同有效应力、不同温度和不同瓦斯压力条件下大量具有代表性的煤样渗透率数据来建立学习样本,并对该模型的精度进行了检验。该BP神经网络经过11 986次学习后精度满足要求,训练后BP神经网络模型所得预测结果的最大绝对误差为0.049×10-15 m2,最大相对误差为4.298%。根据所建立的BP神经网络模型得到的预测值与实测值吻合较好。  相似文献   

10.
基于广义回归神经网络GRNN的矿井瓦斯含量预测   总被引:1,自引:0,他引:1  
煤矿瓦斯涌出量和瓦斯突出受控于多种因素。如何根据各个影响因素预测计算煤层瓦斯含量是一个非常复杂的问题。近年来迅速发展起来的神经网络具有较高的非线性映射和并行处理能力。广义回归神经网络(GRNN)具有网络结构自适应确定、输出与初始权值无关等优良特性,能够逼近任意连续的非线性函数,可以处理系统内在的难以解析的规律。本文以某矿13-1煤层为研究对象,在分析影响煤层瓦斯含量的各种地质因素和量化定性因素的基础上,应用GRNN神经网络方法建立某矿13-1煤层瓦斯含量预测模型,以达到对井田未开采区域进行瓦斯含量预测的目的。  相似文献   

11.
高望  张岩  高帅帅 《陕西煤炭》2020,39(1):77-80
为提高预测模型的可靠性,实现对煤层未采区域瓦斯含量的精确预测,以山阳煤矿5#煤层为研究对象,进行未采区瓦斯含量的预测。运用瓦斯地质学和多元线性回归分析法,得出基岩厚度、煤层厚度和埋深是影响该矿瓦斯赋存的主要因素,并将其作为BP神经网络模型的输入端神经元,初步构建出瓦斯含量预测模型;结合地勘时期瓦斯钻孔的实际数据,进行网络训练,再对预测模型的可靠性进行检验。结果表明:该预测模型预测瓦斯含量,精度较高,效果较好,能满足工程要求。采用多元线性回归-BP神经网络可以对未开采区域煤层瓦斯含量进行准确预测,为矿井瓦斯灾害防治提供一定的参考依据。  相似文献   

12.
为减少煤层瓦斯含量预测的误差并提高预测效率,先利用灰色关联分析量化指标,筛选主因,然后运用GA-BP预测含量的方法。采用Matlab构建模型,选取成庄矿3#煤层的含量与指标作为实验数据进行预测。从预测结果来看,这种预测模型平均相对误差为2.77%,预测其它预测模型精确,可以准确预测煤层瓦斯含量。  相似文献   

13.
针对广东泥竹塘铁矿露天边坡稳定性问题,为了获得矿山的稳定露天边坡角,研究使用BP神经网络进行预测分析。在预测过程中,以边坡岩体质量系数、岩体综合抗压、抗拉强度、内聚力、结构面力学特性、边坡高度及岩体密度等7个指标为输入因子,综合国内矿山27组露天矿山现场数据,建立网络学习、训练样本库,从而实现泥竹塘铁矿稳定露天边坡角的预测。结果表明,露天边坡角的BP神经网络预测模型最大误差小于3%,训练输出误差较小,精度较高,得到的泥竹塘露天铁矿上盘最终边坡角的预测值为42.8°,上盘最终边坡角的预测值为40.1°。多年的生产实践表明,该预测成果与实际基本相符,可为今后类似工程提供参考。  相似文献   

14.
神经网络技术在煤层瓦斯含量预测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
将瓦斯含量预测技术与神经网络原理结合,利用Matlab强大的神经网络工具箱,采用BP模型对钱家营矿区域瓦斯含量进行预测。根据对井田地质条件的分析研究,选取了9个反应本矿瓦斯含量的特征指标,用13个学习样本对网络进行训练,得到了影响因素与瓦斯含量之间的关系。实验表明预测结果能较好的与实际相吻合,证明神经网络技术可以用来准确预测煤层瓦斯含量。  相似文献   

15.
回采工作面瓦斯涌出BP神经网络分源预测模型及应用   总被引:11,自引:1,他引:11       下载免费PDF全文
朱红青  常文杰  张彬 《煤炭学报》2007,32(5):504-508
基于回采工作面瓦斯涌出分源涌出,利用人工神经网络分别预测开采煤层、邻近煤层、采空区3种来源的瓦斯涌出量;因3种来源瓦斯涌出量的影响因素不同,为了避免不相关因素的干扰,提高预测精度,确定整个预测体系由开采层、邻近层、采空区等3个瓦斯涌出量预测神经网络组成,对每个涌出源分别建立神经网络预测模型;最后采用Matlab中BP神经网络算法,针对实际矿井进行应用,预测误差小.  相似文献   

16.
煤岩体在应力作用下的变形与裂纹扩展,是结构失效的重要机制,通过监测煤层的压力变化,分析压力来源、压力大小及其分布特征,为下一步煤岩体卸压方案的形成提供准确可靠依据。以新疆大洪沟煤矿现场锚杆测力计观测数据为研究对象,利用MATLAB的神经网络工具箱提供的许多有关神经网络设计、训练以及仿真的函数,实现BP网络对压力监测数据发展的预测研究。  相似文献   

17.
在综合分析影响煤层底板导水破坏深度因素的基础上,应用灰色关联理论筛选预测指标,建立底板破坏深度的灰色BP神经网络计算模型。该模型采用全国典型突水范例和实测数据作为训练样本和测试样本,对实测值、BP和灰色BP神经网络模型计算值进行对比分析。实例分析表明:应用灰色理论筛选指标考虑因素更加全面,结合神经网络预算结果更为接近实际,该模型为承压水上安全采煤提供了科学依据。  相似文献   

18.
将具有高度非线性识别能力的人工神经网络与遗传算法相结合,探讨了应用于煤层厚度预测的方法,提出了先用遗传算法优化神经网络,再进行结果预测。实践表明,该方法有效提高了精度,对煤层厚度预测提供了一个重要模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号