共查询到20条相似文献,搜索用时 93 毫秒
1.
频繁项集挖掘FIM是最重要的数据挖掘任务之一,被挖掘数据集的特征对FIM算法的性能有着显著影响。在大数据时代,稀疏是大数据的典型特征之一,对传统FIM算法的性能带来严峻挑战。针对在稀疏数据中如何高效进行FIM的问题,从稀疏数据的特征出发,分析了稀疏数据对3种类型FIM算法性能的主要影响,对已经提出的稀疏数据FIM算法进行了综述,对算法中采用的优化策略进行了讨论,最后通过实验对代表性的稀疏数据FIM算法进行了性能分析。实验结果表明,采用伪构造策略的模式增长算法最适合用于稀疏数据的FIM,在运算时间和存储空间上,相比其他算法该算法具有较大的优势。 相似文献
2.
传统的数据挖掘算法在面向大规模高维数据的挖掘过程中,存在数据特征捕捉准确率低、节点负载不均衡、数据交互频繁、频繁项集紧凑化程度低等问题。提出基于MapReduce的并行挖掘算法PARDG-MR,结合高维数据特征,设计基于维度粒化算法和负载均衡算法的DGPL策略,并对数据进行预处理,以解决高维复杂数据特征属性捕捉困难及数据划分中节点负载不均衡的问题。通过构建基于PJPFP-Tree树的频繁项集并行挖掘策略PARM,实现频繁项集的并行化分组过程,从而提高数据处理的运行效率。在此基础上,提出基于剪枝前缀推论的整合节点剪枝算法PJPFP,提高频繁项集挖掘过程中的剪枝效率,增强频繁项集的紧凑化程度。在Webdocs、NDC、Gisette 3个数据集上的实验结果表明,相比PFP-growth、PWARM、MRPrePost算法,该算法的运行时间平均缩短了约20%,能够有效提高数据挖掘效率且降低内存空间。 相似文献
3.
频繁项集挖掘(FIM)是最基础的数据挖掘任务之一,被挖掘数据集的特征对FIM算法的性能有着显著影响。数据集稀疏度是体现数据集本质特征的属性之一,不同类型的FIM算法对数据集稀疏度的可扩展性有着很大的不同。针对如何量化度量数据集稀疏度及稀疏度对不同类型FIM算法性能影响等问题,首先回顾并讨论了已有的度量方法,然后提出两种新的量化度量数据集稀疏度的方法(基于事务差异度的度量方法和基于FP-Tree的度量方法)。这两种度量方法均考虑了FIM任务背景下最小支持度对数据集稀疏度的影响,反映的是事务频繁项集之间的差异度。最后通过实验验证了不同类型FIM算法对数据集稀疏度的可扩展性。实验结果表明,数据集稀疏度与最小支持度成反比,基于垂直格式的FIM算法在三类典型FIM算法中具有最佳的稀疏度可扩展性。 相似文献
4.
由于不确定性数据大量存在于传感器网络,移动计算,军事,电信等应用领域,传统的频繁项集挖掘算法难以适用到不确定性数据挖掘。为了解决这个问题,本文提出了一种快速有效的算法,该算法基于可能世界模型,只需要扫描一次数据库,且没有建树的过程,通过实验证明,我们提出的算法比UF_Growth算法效率更高。 相似文献
5.
提出了项集长度受限且生成项集对应事务信息的最大频繁项集挖掘问题,定义为L-MAX频繁项集挖掘,并重点研究了项集长度约束特征和事务集信息的存储与生成策略.首先研究了L-MAX频繁项集的性质,然后扩展FP-tree提出了ExFP-tree结构并给出ExFP-tree生成算法.ExFP-tree利用FP-tree共享前缀路径的性质通过共享子孙节点事务信息策略实现大量事务信息的压缩存储;最后基于FP-MAX算法,提出基于ExFP-tree的L-MAX频繁项集挖掘算法,核心思想是先根据L-MAX频繁项集长度约束性质进行前瞻剪枝再进行最大频繁项集挖掘,并通过回溯策略直接定位生成对应事务集. 相似文献
6.
7.
频繁项集挖掘算法研究 总被引:2,自引:0,他引:2
频繁项集挖掘是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一.本文以频繁项集挖掘算法的搜索方式和计数方式为主线,分析频繁项集挖掘中的代表性算法及其中的关键技术和方法,对近年来相关研究的新进展做了介绍和评述,并指出了未来的研究方向. 相似文献
8.
随着互联网技术的发展,网络数据变得越来越巨大,如何从中挖掘有效信息成为人们研究的重点。近年来频繁项集挖掘由于其在关联规则挖掘、相关挖掘等任务中的相关重要作用,越来越受到人们的重视。文中针对分布式计算环境下频繁项集挖掘算法的研究,对PFP-Growth算法进行了改进,通过MapReduce编程模型对改进的PFP-Growth算法进行了实现和应用,使用户可以从海量数据中高效地获得所有需要的频繁项集。实验结果表明算法在针对海量数据时具有较高的效率和伸缩性。 相似文献
9.
挖掘频繁模式是数据挖掘领域一个重要且基础的问题.频繁封闭项集挖掘可以提供完全的无冗余的频繁模式.随着生物信息学的兴起,产生了一类具有较多列数的特殊数据集,这种高维数据集对以前的频繁封闭模式挖掘算法提出了新的挑战.对高维数据的频繁封闭模式挖掘算法进行了综述,按照算法的特性对这些算法进行了分类,比较了基于行计数的两类挖掘算... 相似文献
10.
基于频繁项集挖掘最大频繁项集和频繁闭项集 总被引:2,自引:1,他引:2
提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。该类算法的提出,为关联规则的精简提供了一种新的解决方法。 相似文献
11.
多约束下的频繁项集挖掘 总被引:1,自引:0,他引:1
为了要从大量的频繁项集中筛选出有用的规则,引入基于约束的频繁项集的挖掘,有学者已经研究了基于单调型、简洁型约束和Tough型约束的频繁项集挖掘技术,但基于多约束下频繁项集挖掘问题还没有得到解决。论文就是基于这个问题,通过对构造的包含有多约束的算式的研究,确定了在什么情况下多约束能满足单调或反单调的条件。这不但使多约束能够融入到Apriori算法中去,而且提高了多约束条件下候选频繁项集检验的速度和效率。 相似文献
12.
13.
14.
频繁闭合项目集的并行挖掘算法研究 总被引:2,自引:1,他引:2
频繁项目集挖掘因其在数据挖掘领域中的基础地位和广泛应用备受学术界和产业界的关注,用挖掘频繁闭合项目集代替挖掘频繁项目集是近年来提出的一个重要策略。不同于以往提出的挖掘所有频繁项目集的并行算法,本文针对频繁闭合项目集的特性及并行挖掘的特点,给出了共享存储器模型上(Shared Memory)基于频繁模式树(FP-tree)的挖掘频繁闭合项目集的并行算法(FCIPM)思想,提出了频繁闭合项目集直接判断法,性能分析表明所提技术对算法的性能提高起到了关键作用。 相似文献
15.
16.
一种基于单事务项集组合的频繁项集挖掘算法 总被引:2,自引:0,他引:2
Apriori是挖掘频繁项集的基本算法,目前该算法及其优化变种都没有解决候选项及重复扫描事务数据库的问题.文章通过对Apriori及其优化算法的深入探究,提出了一种基于单事务组合项集的挖掘算法,该算法在一个事务内部对"数据项"进行组合,在事务数据库中对所有相同"项集"进行计数.不经过迭代过程,不产生候选项集,所有频繁项集的挖掘过程只需对事务数据库一次扫描,提高了频繁项集挖掘效率. 相似文献
17.
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI—Miner(The Miner Basedon Depth—First Searching for Mining Maximal Frequent Itemsets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。 相似文献
18.
FP-growth算法用于关联规则挖掘分成两个阶段:构建频繁模式树和进行频繁模式挖掘;对这两个阶段分别进行改进,若项头表中存在同频度的频繁项,在构建FP-tree的过程动态调整其位置,构建压缩的最优化FP-tree,提出了IMFP-tree算法。在进行频繁模式挖掘阶段,提出CFP-mine算法,CFP-mine算法采用一种新方法构建条件模式基,且采用组合方式挖掘频繁项集,有别于传统FP-growth算法的挖掘过程,理论上证明和实验验证本算法的正确性和高效性。 相似文献
19.
20.
频繁项集挖掘的研究与进展 总被引:6,自引:0,他引:6
挖掘频繁项集是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进行改进以提高算法的效率。该文从频繁项集生成过程中解空间的类型、搜索方法和剪枝策略、数据库的表示方法、数据压缩技术等几个方面对频繁项集挖掘的基本策略进行了研究,对完全频繁项集挖掘、频繁闭项集挖掘和最大频繁项集挖掘的典型算法特别是最新算法进行了介绍和评述,并分析了各种算法的性能特点,指出其适于哪种类型的数据集。最后,对频繁项集挖掘算法的发展方向进行了初步的探讨。 相似文献