首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于AT89C51的智能测频仪设计   总被引:1,自引:0,他引:1  
在简要介绍和分析几种数字测频原理与方法的基础上,介绍以AT89C51单片机为核心控制器件,采用等精度同步测量技术,完成在0.1Hz~1MHz频率范围内,最高分辨率为0.1Hz的智能测频仪的设计;详细说明了测量的工作原理和系统构成,以及系统软、硬件设计,并就智能测量和系统误差作了分析;研究表明采用该仪器测量频率的范围和精度均达到技术要求.  相似文献   

2.
本文利用多周期同步测频法开发车速测量系统.文章分析了传统测频方法存在的问题、采用多周期同步测频法实现整个测频范围内的等精度测量的原理、以及提高测量精度的方法,给出基于该方法的车速测量系统的软、硬件实现方式,并利用该系统进行实际测试.实验结果表明,该系统具有测量精度高、测量范围大、抗干扰性强等优点,适用于整车测试.  相似文献   

3.
基于PXI总线的高精度测频系统的设计   总被引:1,自引:1,他引:0  
为了能够快速准确地测量信号的频率,提高测量精度,搭建了基于虚拟仪器编程语言LabVIEW和PXI总线测试技术的测试平台;介绍了PXI总线,并基于虚拟仪器的设计思想,提出了详细的测频方案,从实际应用的角度出发介绍了一种高精度测频系统的设计与实现;该系统具有操作简单、测试精度高、便于扩展、可移植性强等特点,能够充分满足各种频率信号的测试要求。  相似文献   

4.
相关原理广泛应用于时频领域里频标的产生、频率稳定度的测量比对、扩展测量频段以及测量比对装置的检定等方面.文中对时间频率测量中的相关原理进行了简要介绍和分析,并通过双混频时差(DMTD)测量系统中的转换振荡器对相关性进行了分析研究,经分析证明基于相关原理可改进测量系统或装置的性能,完善频率测量的方法,从而提高时间频率的测试精度.  相似文献   

5.
基于CPLD的振弦式传感器的频率测量技术   总被引:1,自引:0,他引:1  
振弦传感器具有谐振频率范围宽的特点。为了在较大频段内实现高精度测量,设计了一种用等精度测频法实现振弦式传感器频率测量的方法。在详细介绍等精度测频的基本原理的基础上,利用大规模可编程逻辑器件(CPLD/FPGA)实现了传感器频率的测量;同时,给出了用VHDL描述语言设计硬件电路的过程。所设计的测频系统具有硬件电路简洁、可靠,单片机控制器程序设计简单、测量速度快、可控性好等特点。实验结果表明,这种测频方法符合设计要求,取得了理想的效果,有较好的应用前景。  相似文献   

6.
基于PC总线的高精度频率测量卡设计   总被引:5,自引:0,他引:5  
本文应用等精度测频原理,设计了基于PC总线的高精度频率测量卡。克服了一般直接测频法在低频段精度不高的缺陷,实现了在整个测量频段保持高精度不变的目标。给出了等精度测频电路图和软件功能子程序图。  相似文献   

7.
基于CPLD与DSP的高精度自适应频率测量方法的研究与实现   总被引:5,自引:1,他引:4  
对等精度频率测量的基本方法进行了两方面的改进;一方面在不提高系统工作频率和延长测量门限时间的前提下.通过对基准时钟信号计数值的修正,进一步提高了测量精度;另一方面利用对被测信号的自适应分频,消除了预置门限时间带来的不足,简化了同步逻辑电路,提高了系统可靠性,实现了测量门限时间的自动寻优;在基于可编程逻辑器件CPLD以及DSP芯片的硬件系统中,实现了范围为1Hz~2MHz、相对误差不大于10-4的频率测量,进行了相关实验验证并给出了实验结果。  相似文献   

8.
针对传统频率计测量精度不高、测量过程中精度易发生变化以及逼近式换挡速度慢等缺点,利用VHDL语言和复杂系统可编程逻辑器件CPLD,开发了一种等精度自适应测频系统.该系统采用VHDL语言编写程序,选用EDA开发软件QuartusⅡ作为开发平台,并具体给出了系统的软硬件设计流程.试验表明,该频率计测量速度快、测量精度高、测量误差小,较好地弥补了当前频率计的缺点.  相似文献   

9.
在某些对测频精度要求较高的场合,如惯导信号的频率测量,仍然是采用手动计数器测量,这种测频法不能同时测量多个产品、多个通道,而且测量结果需人工填写多张表格,耗时较长,测量效率很低。针对此缺陷,设计了用虚拟仪器和FPGA编程替代手动计数器的惯导信号自适应测频系统,该系统可在宽频段(0.1Hz~200KHz范围内)实现同时、连续对多个产品、多个通道快速、高精度测量,并能根据被测频率的变化自动实时输出测量结果,实现测量自动化;测频系统经实际测量检验精度达到10-7。  相似文献   

10.
为提高经典频谱校正算法的测频精度,给出了基于卷积运算构造新窗函数的方法,并提出考虑负频谱响应的优化新算法.采用优化新算法对基波频率在工频信号周围变化的谐波信号进行频率测量研究,结果表明,新算法可以实现信号频率的高精度测量,测频精度最高可达nHz数量级;同时,新窗函数与新算法的有效结合可优势互补,具有广泛的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号