首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report transmission of ~60-fs and ~245-fs pulses, respectively, over 42-m and 2.5-km fiber links which consist of standard single-mode fibers (SMF) concatenated with dispersion-compensating fibers (DCF). The experiments using very short pulses (~60 fs) over a short fiber length (~42 m) demonstrate the ability to achieve simultaneous dispersion and dispersion slope compensation using this technique. Femtosecond spectral interferometry measurements of this 42-m link show that its residual dispersion slope is approximately six times lower than that of the dispersion-shifted fiber. Finally, to demonstrate that the dispersion-limited propagation distance is proportional to the cube of the pulsewidth, we transmit ~245-fs pulses over a 2.5-km SMF-DCF link and achieve comparable pulse restoration as with the shorter fiber experiments  相似文献   

2.
A new method for chromatic-dispersion compensation is proposed and demonstrated. This method can produce a chromatic dispersion practically in a wide range from -2000 to +2000 ps/nm and can compensate simultaneously for the dispersion of over 60 wavelength channels with 100-GHz spacing in a wavelength-division multiplexed (WDM) system that has a total bandwidth of over 50 nm. This method has further attractive features such as very small polarization-state dependence, mechanically variable chromatic dispersion, and potential for small packaging. It was experimentally confirmed that this method compensated for the chromatic dispersion accumulated through 110 km standard single-mode fiber (SMF) at 1.55-μm wavelength and that 10-Gb/s signal quality was clearly recovered after the 110-km transmission  相似文献   

3.
We have demonstrated essentially complete dispersion compensation for 400-fs pulses over a 10-km fiber link using dispersion compensating fiber and a programmable femtosecond pulse shaper functioning as a spectral phase equalizer. The pulse shaper impresses adjustable quadratic and cubic phases onto the spectrum and removes all the residual dispersion and dispersion slope in the dispersion compensated fiber link. Our work shows that the pulse shaper technique provides a powerful and convenient tool for programmable fiber dispersion compensation over broad optical bandwidth. This allows distortion-free femtosecond pulse transmission over a fiber link in excess of 10 km without requiring the exact trimming of the dispersion-compensating fiber  相似文献   

4.
This letter demonstrates an 8-Gb/s optical PSK (phase shift keying) synchronous detection transmission experiment using external cavity laser diodes. A 188-km 1.3-μm zero-dispersion fiber is used as the transmission medium at the wavelength of 1.55 μm. Fiber chromatic dispersion is successfully compensated with a microstrip-line delay equalizer  相似文献   

5.
基于微结构光纤的10 GHz超过1100信道的平坦超连续谱光源   总被引:1,自引:0,他引:1  
报道了一种基于微结构光纤的宽带、平坦超连续谱(SC)光源。利用锁模半导体激光器产生的1.6ps,重复率为10GHz的光脉冲,通过一段80m的色散平坦高非线性微结构光纤(HNL-MF),在1.55μm波长区域产生了谱宽超过100nm的平坦超连续谱。实验中采用的微结构光纤的非线性系数约为11W-1·km-1。光纤具有小的正常色散和平坦的色散特性,在1550nm波长处,光纤的色散值约为-0.58ps·nm-1·km-1,而在1500~1650nm波长范围内,光纤的色散值变化小于1.5ps·nm-1·km-1。实验中获得的宽带、平坦超连续谱在1503~1593nm宽达90nm的波长范围内,具有±2.5dB的平坦度。该宽带、平坦超连续谱能同时提供波长间隔为10GHz,超过1100路的多波长载波信道。通过对光谱滤波,获得了速率为10Gbit/s的多波长脉冲序列。这样的超连续谱光源在波分复用(WDM)光通信系统、光波长变换等方面都有重要的应用。  相似文献   

6.
Waveform distortion of a continuous phase FSK signal due to fiber chromatic dispersion is measured. The transmission spacing is estimated to be 100 km at 5 Gbit/s with 1.55-μm wavelength. Also the 2-Gbit/s optical CPFSK heterodyne detection transmission experiment is reported. Since there is no chirping degradation, it is possible to transmit the signal through a 200-km single-mode fiber.  相似文献   

7.
The frequency-interleaved dense- wavelength-division-multiplexing (DWDM) millimeter-wave (mm-wave) radio-on-fiber is an indispensable technique to improve the optical spectrum efficiency. We propose possible configurations of multiplexing and demultiplexing (DEMUX) schemes using an arrayed-waveguide grating (AWG) with two input and N output waveguides (N: total channel number). In this paper, we focus on the DEMUX scheme and experimentally demonstrate the DEMUX scheme using a commercially available AWG. In the experiment, 25-GHz-separated two-channel optical double sideband signals modulated by a 60-GHz millimeter-wave carrying a 156-Mb/s data are optically multiplexed by the frequency interleaving. The power penalty after DEMUX, which was due to interchannel interference, was less than 0.5 dB. We also made a transmission experiment over 25-km standard single-mode fiber (SMF). No noticeable power penalty in the received data due to chromatic dispersion of the transmission fiber was observed. This is because only the carrier and a sideband are detected in the proposed DEMUX scheme.  相似文献   

8.
The generation of optical phase-conjugate waves and the application of optical phase conjugation (OPC) to optical communication systems is described. The method of pulse shape distortion compensation by OPC is outlined including distortion due to both fiber dispersion and the optical Kerr effect. The generation of a forward-going phase-conjugate wave in a third-order nonlinear medium is discussed and that by a nondegenerate forward four-wave mixing in a zero-dispersion single-mode fiber (SMF) is investigated. Suppressing the stimulated Brillouin scattering (SBS) of a pump wave in the fiber prevents saturation of the generation efficiency of the phase-conjugate wave even when the pump power exceeds the SBS threshold. In transmission experiments through a 200-km standard SMF with a 16-Gb/s intensity-modulated signal and a 5-Gb/s continuous-phase FSK (CPFSK) modulated signal, it is shown the applicability of OPC is modulation independent and that OPC effectively compensates for both chromatic dispersion and the optical Kerr effect  相似文献   

9.
The transmission characteristics of femtosecond optical solitons in an 18.2 km-long erbium-doped fiber amplifier (EDFA) have been investigated in detail by changing the pumping configuration. With backward pumping, a lossless transmission of 440 fs solitons at 1.55 μm has been realized with a pump power of 16 mW. The output pulsewidth is determined by the spectrum modified by the soliton self-frequency shift. In a bidirectional pumping configuration, 440-fs soliton pulses have been transmitted for a total pump power of 38 mW, where the output pulse width is determined by the original 1.55 μm spectrum. Although a femtosecond soliton is very weakly trapped in the EDFA-gain bandwidth of 1.55 μm and the soliton self-frequency shift inevitably occurs, the femtosecond pulse component still exists at 1.55 μm, and a pulse can be successfully transmitted with a gain of 11 dB and very little pulse broadening  相似文献   

10.
A polarization-independent narrow-channel (PINC) wavelength division multiplexing (WDM) coupler for operation at 1.55 μm has been designed based on the birefringent properties of fused single-mode couplers. These couplers are made from both conventional single-mode fiber (SMF) and dispersion shifted fiber (DSF). The couplers are designed so that the coupling-coefficient-length products for the two orthogonal polarizations are π out of phase. As a result of the long coupling lengths required, these couplers have very small cross-sectional dimensions, typically on the order of 10 μm  相似文献   

11.
We have developed a system for quantum key distribution (QKD), based on standard telecommunication lasers, detectors, and optical fiber, that passively compensates for time-dependent variations of the fiber-optic path due to stress, temperature changes, or birefringence. This approach allows information encoded in phase shifts imposed on single-photon-level pulses to be accurately read out after transmission over many kilometers of uncontrolled fiber. Cooled InGaAs avalanche photodiodes, pulse-biased using a special noise canceling circuit, are used to detect single 1.31-μm infrared photons with a high efficiency, low dark-count rate, and subnanosecond time resolution. A single optical fiber carries both the quantum information and precise 1.55 μm timing pulses between the two end stations. Overall synchronization of end-station activities, public discussion of basis choices, error correction, and privacy amplification have all been implemented over a local area network (LAN). The system at present generates raw, error-corrected, and privacy-amplified key data at rates of ~1000, 600, and 200 bits/s, respectively, over a 10-km single-mode fiber link  相似文献   

12.
We have evaluated the effect of fiber chromatic dispersion equalization at the receiving terminal for transoceanic optical communication systems. We used a 1000-km fiber loop with 31 Er-doped fiber amplifiers for the experiments, and measured the bit-error-rate characteristics after 9000-km transmission. Accumulated chromatic dispersion originating from the discrepancy between the signal wavelength and the system zero dispersion wavelength was equalized by the equalization fiber at the receiving terminal. We used both normal and anomalous dispersion fibers at the receiving end. The results have shown that the equalization method of the fiber chromatic dispersion at the receiving terminal is useful with some limitations for ultra-long distance optical communication systems  相似文献   

13.
In this paper we present long-reach fiber access links supporting transmission of Worldwide Interoperability for Microwave Access (WiMAX) compliant signals. We present bi-directional full-duplex transmission of 256-state quadrature amplitude modulation (256-QAM) modulated WiMAX-compliant signals on a 2.4-GHz RF carrier over an 80-km long-reach access link at 100 Mb/s (down) and 64 Mb/s (up). Transmission of 64-QAM and 256-QAM-modulated signals on a 5.8-GHz RF carrier over a 118.8-km access link converged with four baseband differential quadrature phase shift keying (DQPSK) modulated wireline channels, along with ultra-wide band (UWB) and phase shift keying (PSK) radio-over-fiber (RoF) wireless signals over a deployed optical fiber link is also presented.  相似文献   

14.
Theoretical and experimental results for 23-GHz and 123-GHz near-transform-limited soliton pulse generation at 1.55 μm is presented. The technique uses soliton compression of the beat signal between two CW lasers in standard commercially available single-mode optical fiber and does not require longitudinal variation of the fiber dispersion  相似文献   

15.
The effect of phase noises from a laser and an oscillator on radio-over-fiber (RoF) systems is analyzed and discussed with a power spectral density (PSD) function. A Mach-Zehnder modulator (MZM) and a phase shifter are employed to externally generate an optical single sideband (OSSB) signal since the OSSB signal is tolerable for power degradation due to a chromatic fiber-dispersion effect. It is shown that a carrier-to-noise ratio (CNR) penalty is deeply related to the bandwidth of a receiver filter and the phase noise from a radio frequency (RF) signal oscillator rather than that from a laser in a small differential-delay environment and a direct detection scheme. The CNR penalty due to the increment of the laser linewidth from 10 to 624 MHz is almost 1.1 dB, while the increase of the RF-oscillator linewidth from 1 to 100 Hz results in about a 20-dB penalty at a 30-GHz 10-km transmission in a standard single-mode fiber (SSMF) with a fiber chromatic dispersion of 17 ps/km/spl middot/nm.  相似文献   

16.
Dispersion compensation by active predistorted signal synthesis   总被引:1,自引:0,他引:1  
Techniques for the synthesis of an optical signal predistorted to compensate for fiber dispersion are discussed theoretically. A scheme for very high bit rate (>10 Gbit/s) time-division-multiplexed transmission is proposed which neither requires extremely short pulse sources nor suffers from their inherent dispersion limitations. The rudimentary aspects of the techniques have been verified experimentally by demonstrating both enhanced and degraded transmission of a 4-GHz modulated signal at 1.55 μm over 10-30 km of optical fiber.  相似文献   

17.
Measurement of the chromatic dispersion of an 80.6-km-long, concatenated, dispersion-shifted, single-mode fiber (DSF) with a tunable 1.55-μm external-cavity laser diode, using the phase-shift technique at 1.55 μm over 80-nm bandwidth, is discussed. It is shown that the technique does not need intricate curve-fitting equations or a large number of laser sources with specified wavelengths. As a result, the measurement configuration and procedure are relatively simple. The technique is useful for measuring the chromatic dispersion of future advanced fibers such as dispersion flattened fibers with various refractive index profiles  相似文献   

18.
A theoretical investigation of a guided-wave optical equalizer with an α-power chirped grating is presented. A group delay dispersion of 3700 ps/nm can be obtained at λ=1.55 μm by a chirped grating with α=0.3. It is shown that the chromatic dispersion of 200 km of a fiber whose zero-dispersion wavelength is located at 1.3 μm can be compensated at 1.55 μm to achieve up to 10 GHz signal bandwidth  相似文献   

19.
The generation wave efficiency with respect to phase mismatch in the four-wave mixing process is clarified experimentally in a single-mode fiber transmission line at 825 nm wavelength. The generated power of approximately 20 pW is measured successfully for input signal powers below 1 mW by the technique utilizing a heterodyne receiver and lock-in detector. The calculated efficiency as a function of the equivalent frequency separation can well explain and reflect the results obtained experimentally. Furthermore, the efficiency at zero chromatic dispersion wavelengths of 1.3 and 1.55 μm is also discussed considering chromatic dispersion slope against wavelength.  相似文献   

20.
Grating compensation of third-order fiber dispersion   总被引:2,自引:0,他引:2  
Subpicosecond optical pulses propagating in single-mode fibers are severely distorted by third-order dispersion even at the fiber's zero-dispersion wavelength (λ0). Using cross-correlation techniques, the authors measured the broadening of a 100-fs pulse to more than 5 ps after passing through 400 m of fiber near λ0. The measured asymmetric and oscillatory pulse shape is in agreement with calculations. A grating and telescope apparatus was configured to simultaneously equalize both third- and second-order dispersion for wavelengths slightly longer than λ 0. Nearly complete compensation has been demonstrated for fiber lengths of 400 m and 3 km of dispersion-shifted fiber at wavelengths of 1560-1580 nm. For the longer fibers, fourth-order dispersion due to the grating becomes important  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号