首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A CMOS current reference circuit is presented, which can work properly with a supply voltage higher than 1 V. By compensating the temperature performance of the resistor, this circuit gives out a current with a temperature coefficient of 50 ppm//spl deg/C over the temperature range of (0/spl deg/C, 110/spl deg/C) and a 0.5% variation for a supply voltage of 1 to 2.3 V.  相似文献   

2.
A high-order curvature-compensated CMOS bandgap reference, which utilizes a temperature-dependent resistor ratio generated by a high-resistive poly resistor and a diffusion resistor, is presented in this paper. Implemented in a standard 0.6-/spl mu/m CMOS technology with V/sub thn//spl ap/|V/sub thp/|/spl ap/0.9 V at 0/spl deg/C, the proposed voltage reference can operate down to a 2-V supply and consumes a maximum supply current of 23 /spl mu/A. A temperature coefficient of 5.3 ppm//spl deg/C at a 2-V supply and a line regulation of /spl plusmn/1.43 mV/V at 27/spl deg/C are achieved. Experimental results show that the temperature drift is reduced by approximately five times when compared with a conventional bandgap reference in the same technology.  相似文献   

3.
A voltage reference in CMOS technology is based upon transistor pairs of the same type except for the opposite doping type of their polysilicon gates. At identical drain currents, the gate voltage difference, close to the silicon bandgap, is 1.2 V/spl plusmn/0.06 V. Circuits for a positive and for a negative voltage reference are presented. Digital voltage tuning improves accuracy. Temperature compensation is provided by proper choice of current ratio or by means of an auxiliary circuit. Voltage drift is about 300 ppm//spl deg/C without compensation, and can be reduced to /spl plusmn/30 ppm//spl deg/C. The circuits work with a supply voltage of 2-10 V and draw a current that is less than 1 /spl mu/A.  相似文献   

4.
A new CMOS voltage reference circuit consisting of two pairs of transistors is presented. One pair exhibits a threshold voltage difference with a negative temperature coefficient (-0.49 mV//spl deg/C), while the other exhibits a positive temperature coefficient (+0.17 mV//spl deg/C). The circuit was robust to process variations and exhibited excellent temperature independence and stable output voltage. Aside from conductivity type and impurity concentrations of gate electrodes, transistors in the pairs were identical, meaning that the system was robust with respect to process fluctuations. Measurements of the voltage reference circuit without trimming adjustments revealed that it had excellent output voltage reproducibility of within /spl plusmn/2%, low temperature coefficient of less than 80 ppm//spl deg/C, and low current consumption of 0.6 /spl mu/A.  相似文献   

5.
A very high precision 500-nA CMOS floating-gate analog voltage reference   总被引:2,自引:0,他引:2  
A floating gate with stored charge technique has been used to implement a precision voltage reference achieving a temperature coefficient (TC) <1 ppm//spl deg/C in CMOS technology. A Fowler-Nordheim tunnel device used as a switch and a poly-poly capacitor form the basis in this reference. Differential dual floating gate architecture helps in achieving extremely low temperature coefficients, and improving power supply rejection. The reference is factory programmed to any value without any trim circuits to within 200 /spl mu/V of its specified value. The floating-gate analog voltage reference (FGAREF) shows a long-term drift of less than 10 ppm//spl radic/1000 h. This circuit is ideal for portable and handheld applications with a total current of only 500 nA. This is done by biasing the buffer amplifier in the subthreshold region of operation. It is fabricated using a 25-V 1.5-/spl mu/m E/sup 2/PROM CMOS technology.  相似文献   

6.
A low-voltage temperature sensor designed for MEMS power harvesting systems is fabricated. The core of the sensor is a bandgap voltage reference circuit operating with a supply voltage in the range 1-1.5 V. The prototype was fabricated on a conventional 0.5 /spl mu/m silicon-on-sapphire (SOS) process. The sensor design consumes 15 /spl mu/A of current at 1 V. The internal reference voltage is 550 mV. The temperature sensor has a digital square wave output the frequency of which is proportional to temperature. A linear model of the dependency of output frequency with temperature has a conversion factor of 1.6 kHz//spl deg/C. The output is also independent of supply voltage in the range 1-1.5 V. Measured results and targeted applications for the proposed circuit are reported.  相似文献   

7.
A CMOS voltage reference, which is based on the weighted difference of the gate-source voltages of an NMOST and a PMOST operating in saturation region, is presented. The voltage reference is designed for CMOS low-dropout linear regulators and has been implemented in a standard 0.6-/spl mu/m CMOS technology (V/sub thn//spl ap/|V/sub thp/|/spl ap/0.9 V at 0/spl deg/C). The occupied chip area is 0.055 mm/sup 2/. The minimum supply voltage is 1.4 V, and the maximum supply current is 9.7 /spl mu/A. A typical mean uncalibrated temperature coefficient of 36.9 ppm//spl deg/C is achieved, and the typical mean line regulation is /spl plusmn/0.083%/V. The power-supply rejection ratio without any filtering capacitor at 100 Hz and 10 MHz are -47 and -20 dB, respectively. Moreover, the measured noise density with a 100-nF filtering capacitor at 100 Hz is 152 nV//spl radic/(Hz) and that at 100 kHz is 1.6 nV//spl radic/(Hz).  相似文献   

8.
A time-to-digital-converter-based CMOS smart temperature sensor   总被引:1,自引:0,他引:1  
A time-to-digital-converter-based CMOS smart temperature sensor without a voltage/current analog-to-digital converter (ADC) or bandgap reference is proposed for high-accuracy portable applications. Conventional smart temperature sensors rely on voltage/current ADCs for digital output code conversion. For the purpose of cost reduction and power savings, the proposed smart temperature sensor first generates a pulse with a width proportional to the measured temperature. Then, a cyclic time-to-digital converter is utilized to convert the pulse into a corresponding digital code. The test chips have an extremely small area of 0.175 mm/sup 2/ and were fabricated in the TSMC CMOS 0.35-/spl mu/m 2P4M process. Due to the excellent linearity of the digital output, the achieved measurement error is merely -0.7/spl sim/+0.9/spl deg/C after two point calibration, but without any curvature correction or dynamic offset cancellation. The effective resolution is better than 0.16/spl deg/C, and the power consumption is under 10 /spl mu/W at a sample rate of 2 samples/s.  相似文献   

9.
Gallium nitride self-aligned MOSFETs were fabricated using low-pressure chemical vapor-deposited silicon dioxide as the gate dielectric and polysilicon as the gate material. Silicon was implanted into an unintentionally doped GaN layer using the polysilicon gate to define the source and drain regions, with implant activation at 1100/spl deg/C for 5 min in nitrogen. The GaN MOSFETs have a low gate leakage current of less than 50 pA for circular devices with W/L=800/128 /spl mu/m. Devices are normally off with a threshold voltage of +2.7 V and a field-effect mobility of 45 cm/sup 2//Vs at room temperature. The minimum on-resistance measured is 1.9 m/spl Omega//spl middot/cm/sup 2/ with a gate voltage of 34 V (W/L=800/2 /spl mu/m). High-voltage lateral devices had a breakdown voltage of 700 V with gate-drain spacing of 9 /spl mu/m (80 V//spl mu/m), showing the feasibility of self-aligned GaN MOSFETs for high-voltage integrated circuits.  相似文献   

10.
Low-power low-voltage reference using peaking current mirror circuit   总被引:4,自引:0,他引:4  
Cheng  M.-H. Wu  Z.-W. 《Electronics letters》2005,41(10):572-573
A low-power low-voltage bandgap reference using the peaking current mirror circuit with MOSFETs operated in the subthreshold region is presented. A demonstrative chip was fabricated in 0.35 /spl mu/m CMOS technology, achieving the minimum supply voltage 1.4 V, the reference voltage around 580 mV, the temperature coefficient 62 ppm//spl deg/C, the supplied current 2.3 /spl mu/A, and the power supply noise rejection ratio of -84 dB at 1 kHz.  相似文献   

11.
The sensor described includes a four-arm piezoresistance bridge circuit, an amplifier, and a bridge excitation circuit. This circuit is used to stabilize changes in sensitivity due to variations in temperature and supply voltage. The sensor was fabricated using a self-aligned double-poly Si gate p-well CMOS process combined with an electrochemical etch-stop technique using N/SUB 2/H/SUB 4/-H/SUB 2/O anisotropic etchant for the thin-square diaphragm formation. The silicon wafer was electrostatically adhered to a glass plate to minimize thermally induced stress. Less than a /spl plusmn/0.5% sensitivity shift and less than a /spl plusmn/5-mV offset shift were obtained in the 0-70/spl deg/C range, with a 1-V/kg/cm/SUP 2/ pressure sensitivity. By using a novel excitation technique, a sensitivity change of less than /spl plusmn/1.5% under a /spl plusmn/10% supply voltage variation was also achieved.  相似文献   

12.
A study on arc-induced long-period fibre gratings (LPFGs) revealed that their strain sensitivity depends on the electric current of the arc discharge. Based on that property, a sensor scheme comprising two concatenated LPFGs was implemented for discrimination of temperature and strain effects. This sensor presented resolutions of /spl plusmn/0.1/spl deg/C//spl radic/Hz and /spl plusmn/35 /spl mu//spl epsiv///spl radic/Hz, respectively.  相似文献   

13.
For gate oxide thinned down to 1.9 and 1.4 nm, conventional methods of incorporating nitrogen (N) in the gate oxide might become insufficient in stopping boron penetration and obtaining lower tunneling leakage. In this paper, oxynitride gate dielectric grown by oxidation of N-implanted silicon substrate has been studied. The characteristics of ultrathin gate oxynitride with equivalent oxide thickness (EOT) of 1.9 and 1.4 nm grown by this method were analyzed with MOS capacitors under the accumulation conditions and compared with pure gate oxide and gate oxide nitrided by N/sub 2/O annealing. EOT of 1.9- and 1.4-nm oxynitride gate dielectrics grown by this method have strong boron penetration resistance, and reduce gate tunneling leakage current remarkably. High-performance 36-nm gate length CMOS devices and CMOS 32 frequency dividers embedded with 57-stage/201-stage CMOS ring oscillator, respectively, have been fabricated successfully, where the EOT of gate oxynitride grown by this method is 1.4 nm. At power supply voltage V/sub DD/ of 1.5 V drive current Ion of 802 /spl mu/A//spl mu/m for NMOS and -487 /spl mu/A//spl mu/m for PMOS are achieved at off-state leakage I/sub off/ of 3.5 nA//spl mu/m for NMOS and -3.0 nA//spl mu/m for PMOS.  相似文献   

14.
A high performance, second generation I/SUP 2/L/MTL gate for digital LSI applications with TTL compatibility has successfully been designed, characterized, and demonstrated fully functional over a wide current range and the military temperature range of -55 to 125/spl deg/C. Performance is measured using an in-line five-collector gate having one end injector. The gate performed with the following characteristics at 100 /spl mu/A injector current: /spl beta//SUB U//SUP eff//spl ges/4 for all collectors at 25/spl deg/C and /spl ges/2.5 at -55/spl deg/C, /spl alpha//SUB rec///spl alpha//SUB F//spl cong/0.58 and /spl tau/~/SUB d/=18-20 ns from -55 to 125/spl deg/C, and a speed-power product of 1.4 pJ at 25/spl deg/C. At low injector currents, a constant speed-power product of 0.36 pJ at 25/spl deg/ was obtained.  相似文献   

15.
Two bandgap references are presented which make use of CMOS compatible lateral bipolar transistors. The circuits are designed to be insensitive to the low beta and alpha current gains of these devices. Their accuracy is not degraded by any amplifier offset. The first reference has an intrinsic low output impedance. Experimental results yield an output voltage which is constant within 2 mV, over the commercial temperature range (0 to 70/spl deg/C), when all the circuits of the same batch are trimmed at a single temperature. The load regulation is 3.5 /spl mu/V//spl mu/A, and the power supply rejection ratio (PSRR) at 100 Hz is 60 dB. Measurements on a second reference yield a PSRR of minimum 77 dB at 100 Hz. Temperature behaviour is identical to the first circuit presented. This circuit requires a supply voltage of only 1.7 V.  相似文献   

16.
The realization of a commercially viable, general-purpose quad CMOS amplifier is presented, along with discussions of the tradeoffs involved in such a design. The amplifier features an output swing that extends to either supply rail, together with an input common-mode range that includes ground. The device is especially well suited for single-supply operation and is fully specified for operation from 5 to 15 V over a temperature range of -55 to +125/spl deg/C. In the areas of input offset voltage, offset voltage drift, input noise voltage, voltage gain, and load driving capability, this implementation offers performance that equals or exceeds that of popular general-purpose quads or bipolar of Bi-FET construction. On a 5-V supply the typical V/SUB os/ is 1 Mv, V/SUB os/ drift is 1.3 /spl mu/V//spl deg/C, 1-kHz noise is 36 nV//spl radic/Hz, and gain is one million into a 600-/spl Omega/ load. This device achieves its performance through circuit design and layout techniques as opposed to special analog CMOS processing, thus lending itself to use on system chips built with digital CMOS technology.  相似文献   

17.
A low-cost temperature sensor with on-chip sigma-delta ADC and digital bus interface was realized in a 0.5 /spl mu/m CMOS process. Substrate PNP transistors are used for temperature sensing and for generating the ADC's reference voltage. To obtain a high initial accuracy in the readout circuitry, chopper amplifiers and dynamic element matching are used. High linearity is obtained by using second-order curvature correction. With these measures, the sensor's temperature error is dominated by spread on the base-emitter voltage of the PNP transistors. This is trimmed after packaging by comparing the sensor's output with the die temperature measured using an extra on-chip calibration transistor. Compared to traditional calibration techniques, this procedure is much faster and therefore reduces production costs. The sensor is accurate to within /spl plusmn/0.5/spl deg/C (3/spl sigma/) from -50/spl deg/C to 120/spl deg/C.  相似文献   

18.
This paper presents the development of 1000 V, 30A bipolar junction transistor (BJT) with high dc current gain in 4H-SiC. BJT devices with an active area of 3/spl times/3 mm/sup 2/ showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm/sup 2/, at a forward voltage drop of 2 V. A common-emitter current gain of 40, along with a low specific on-resistance of 6.0m/spl Omega//spl middot/cm/sup 2/ was observed at room temperature. These results show significant improvement over state-of-the-art. High temperature current-voltage characteristics were also performed on the large-area bipolar junction transistor device. A collector current of 10A is observed at V/sub CE/=2 V and I/sub B/=600 mA at 225/spl deg/C. The on-resistance increases to 22.5 m/spl Omega//spl middot/cm/sup 2/ at higher temperatures, while the dc current gain decreases to 30 at 275/spl deg/C. A sharp avalanche behavior was observed at a collector voltage of 1000 V. Inductive switching measurements at room temperature with a power supply voltage of 500 V show fast switching with a turn-off time of about 60 ns and a turn-on time of 32 ns, which is a result of the low resistance in the base.  相似文献   

19.
The authors demonstrate high-performing n-channel transistors with a HfO/sub 2//TaN gate stack and a low thermal-budget process using solid-phase epitaxial regrowth of the source and drain junctions. The thinnest devices have an equivalent oxide thickness (EOT) of 8 /spl Aring/, a leakage current of 1.5 A/cm/sup 2/ at V/sub G/=1 V, a peak mobility of 190 cm/sup 2//V/spl middot/s, and a drive-current of 815 /spl mu/A//spl mu/m at an off-state current of 0.1 /spl mu/A//spl mu/m for V/sub DD/=1.2 V. Identical gate stacks processed with a 1000-/spl deg/C spike anneal have a higher peak mobility at 275 cm/sup 2//V/spl middot/s, but a 5-/spl Aring/ higher EOT and a reduced drive current at 610 /spl mu/A//spl mu/m. The observed performance improvement for the low thermal-budget devices is shown to be mostly related to the lower EOT. The time-to-breakdown measurements indicate a maximum operating voltage of 1.6 V (1.2 V at 125 /spl deg/C) for a ten-year lifetime, whereas positive-bias temperature-instability measurements indicate a sufficient lifetime for operating voltages below 0.75 V.  相似文献   

20.
A 5 V internally temperature regulated voltage reference integrated circuit, which achieves 0.3 ppm//spl deg/C TC over the temperature range -55/spl deg/C to 125/spl deg/C, is described. It is built using a buried zener reference in a dielectrically isolated complementary bipolar process which employs laser trimmed NiCr thin film resistors and a high thermal resistance epoxy die attach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号