首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
沙宇  张嘉振  白士刚  周振功 《工程力学》2012,29(10):327-334
应用弹塑性有限元方法与增量塑性损伤理论指出疲劳裂纹扩展的压载荷效应是裂纹尖端塑性损伤的结果, 建立了在拉-压循环加载下铝合金疲劳裂纹扩展速率的双参数预报模型, 对LY12-M 高强铝合金MT 试件在应力比R=0、-0.5、-1、-2 进行了疲劳裂纹扩展实验。结果表明:当最大应力强度因子Kmax相同时, 恒幅拉压加载(应力比R<0)的疲劳裂纹扩展速率明显高于恒幅拉拉加载(应力比R=0)的情况, 拉-压循环载荷的压载荷部分对疲劳裂纹扩展速率具有促进作用。该文得出的LY12-M 铝合金在拉-压循环加载下的疲劳裂纹扩展速率预报模型与实验结果符合较好。  相似文献   

2.
周克民 《工程力学》1997,(A02):240-244
本文使用LY11CZ铝合金及18MnHP钢两种板材的中心裂纹拉伸试件,在不同应力水平及应力比下,就应力比,特别是循环载荷压缩部分对疲劳裂纹扩展速率的影响进行了试验研究和分析,指出,现有裂纹闭合理论不足以解释载荷压半周的作用,并就两种材料给出了估算裂纹扩展速率的经验公式。在此基础上还指出,用线弹性断裂力学应力强度因子K作为裂纹扩展的控制参量,在理论上,有待进一步研究。  相似文献   

3.
采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。  相似文献   

4.
疲劳性能是粉末冶金铝合金一项重要的使用性能,研究疲劳裂纹扩展行为是研究疲劳性能的一种重要的方法。总结了影响粉末冶金铝合金疲劳裂纹扩展速率的各种外部因素和内部因素,外部因素主要包括应力比、温度、制备方法等,内部因素有晶粒尺寸、夹杂物、铝基复合材料中的增强相颗粒等,并详细阐述了这些因素的影响机制。  相似文献   

5.
对4种金属材料在Ⅱ型加载条件下的疲劳裂纹扩散行为进行的试验研究表明:在Ⅱ型加载条件下,裂纹可能仍沿Ⅱ型方向继续扩展,亦可能发生分支转变成Ⅰ型甚至Ⅰ+Ⅱ型扩展,主要取决于材料本身的性质和它们的微观结构以及应力水平。当裂纹仍沿Ⅱ型方向扩展时,其扩展速率比相当应力水平的Ⅰ型裂纹扩展速率要大得多。  相似文献   

6.
刘应华  王燕群 《工程力学》1997,(A01):509-514
提出了一种考虑材料循环塑性性能的研究疲劳裂纹扩展与闭合行为的有限元模拟方法。研究了在循环硬化条件下考虑纹闭合效应时裂纹面经张开廓形,裂纹洋端应力,应场和正反向塑性区的演化规律,对于循环硬化和不同循环应力比R等因素对裂纹纹凝开应力水平的影响也作了考查。  相似文献   

7.
利用扫描电镜联合液压伺服试验机,并借助于Walker公式研究了应力比对预腐蚀不同时间航空高强LD2CZ铝合金疲劳裂纹扩展的影响,在应力比分别为0.05,0.5,0.7的条件下对预腐蚀0,15,30d的LD2CZ铝合金单边缺口板状试样进行了疲劳加载试验,得到了其疲劳裂纹扩展速率曲线,并拟合出了Walker公式中的材料常数。结果表明:裂纹扩展速率会随着应力比的增加以及腐蚀损伤的加深而增大,拟舍得到的Walker公式可用来定量化地表征应力比和腐蚀损伤对疲劳裂纹扩展速率的影响。  相似文献   

8.
疲劳裂纹扩展行为是现代材料研究中重要的内容之一.论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响.总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了"塑性钝化模型"和"裂纹闭合效应"与实际观察结果存在的矛盾.最后,对钛合金疲劳裂纹扩展研究的内容和研究结果进行了概述.  相似文献   

9.
为分析单裂纹或多裂纹在裂纹面承受疲劳拉伸载荷作用下尖端应力强度因子变化规律和裂纹形貌变化以及疲劳寿命情况,以含不同初始长深比的半椭圆单裂纹或双裂纹的薄片试样为研究对象,对试样在应力比R=0.1的疲劳拉伸载荷下单裂纹或双裂纹情况进行了仿真分析。建立含裂纹试样的有限元模型,仿真分析了裂纹在扩展过程中尖端应力强度因子的分布情况,并将单裂纹扩展结果与双裂纹相互作用影响下的结果进行了对比研究;进行含裂纹试样的疲劳实验,分析了含单裂纹或双裂纹的试样的断裂面的形成原因,并验证仿真结果正确性。结果表明,裂纹面之间的相互作用会逐渐影响裂纹的扩展方向、扩展速率以及在扩展过程中尖端应力强度因子的变化趋势;而且初始形貌为半椭圆形的双裂纹在相互作用影响下会逐渐过渡到半圆形。  相似文献   

10.
铝合金6082T6作为一种常用的航空材料具有很好的力学性能,使用这种材料对疲劳不扩展裂纹进行了研究。试样形状为单边缺口拉伸试样,并在裂纹尖端使用数控机床钻直径为1mm的止裂孔。通过分析可得:疲劳不扩展裂纹可以通过对试样几何尺寸的合理设置得到。在设计中可以在疲劳构件容易萌生裂纹的部位预留出不扩展裂纹的容许长度,从而更大限度的提高构件的寿命可靠性,并且可以抵抗一定程度的外界不确定载荷的冲击影响,减少在裂纹维修或检查间隔期间的裂纹扩展风险。  相似文献   

11.
The fatigue crack growth characteristics of high-strength aluminium alloys are discussed in terms of behaviour during mechanical testing and fracture surface appearance. For a wide range of crack growth rates, the crack extends both by the formation of ductile striations and by the coalescence of micro-voids. Dimples are observed at stress intensities very much less than the plane strain fracture toughness, and this is explained in terms of the probability of inclusions lying close to the crack tip. The striation formation process is described as a combination of environmentally-enhanced cleavage processes and plastic blunting of the crack tip.  相似文献   

12.
Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy-silicon carbide composite were investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects of stress ratios of 0.1, 0.25 and 0.50 were studied with the second set of specimens. The study showed that the fatigue crack propagation behaviour of this metal matrix composite was influenced to an appreciable extent by the stress ratio, but not by the fatigue frequencies used in this investigation.  相似文献   

13.
To improve the fail‐safety performance of integral metallic structures, the bonded crack retarder concept has been developed in recent years. This paper presents an experimental investigation on the effectiveness of bonded crack retarder on fatigue crack growth life in two aerospace aluminium alloys: 2624‐T351 and 7085‐T7651. M(T) specimens bonded with a pair of straps made of GLARE fibre‐metal laminate were tested under the constant amplitude load. Although the bonded crack retarders increased the crack growth life in both alloys, the magnitude of life improvement is very different between them. Compared to unreinforced specimens, application of crack retarders has resulted in 90% increase in fatigue life in AA7085, but only 27% increase in AA2624. The significant difference in fatigue life improvement is owing to the material's intrinsic fatigue crack growth rate property, ie, the Paris law constants C and n. Value of n for AA7085 is 1.8 times higher than that for AA2624. Therefore, AA7085 is much more sensitive to reductions in the effective stress intensity factor brought by the crack retarders, hence better life improvement.  相似文献   

14.
A cumulative model of fatigue crack growth   总被引:1,自引:0,他引:1  
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated by means of the local stress/strain at the crack tip. The local stress and strain calculations are based on the general solutions given by Hutchinson, Rice and Rosengren. It is assumed that a small highly strained area existing at the crack tip is responsible for the fatigue crack growth. It is also assumed that the fatigue crack growth rate depends mainly on the width, x1, of the highly strained zone and on the strain range, Δ?1, within the zone. A relationship between stress intensity factor K and the local strain and stress has been developed. It is possible to calculate the local strain for a variety of crack problems. Then, the number of cycles N1 required for material failure inside the highly strained zone is calculated. The fatigue crack growth rate is calculated as the ratio x1N1.The calculated fatigue crack growth rates were compared to the experimental ones. Two alloys steels and two aluminium alloys were analyzed. Good agreement between experimental and theoretical results is obtained.  相似文献   

15.
Two-stage fatigue loading of woven carbon fibre reinforced laminates   总被引:1,自引:0,他引:1  
A brief review of the models used to predict the cumulative fatigue damage in FRP composites is presented. Two‐stage fatigue loading of a [0/90,± 452,0/90]s quasi‐ isotropic woven carbon fibre/epoxy resin laminate was evaluated at stress ratio R = 0.05 and the failure mechanisms investigated using x‐radiography after each loading stage. The results are presented in terms of fatigue strength and damage growth and are compared with those in the literature. A low‐to‐high loading sequence is more damaging than a high‐to‐low one and the Palmgren‐Miner linear damage rule may no longer be valid for this kind of material, as previously reported.  相似文献   

16.
To extend the predictive capability of existing crack growth models for fibre metal laminates under constant amplitude fatigue loading to variable-amplitude loading, further research on variable-amplitude fatigue mechanisms in fibre metal laminates is necessary. In response to this need, an experimental study into the effects of multiple overloads, underloads and various block-loading sequences on crack growth in the fibre metal laminate Glare was investigated. Crack growth retardation effects were observed in the tests; however, the magnitude of these effects was lower than seen in monolithic aluminium because of fibre bridging. As a result, predictions of the observed behaviour were attempted using an existing constant-amplitude fatigue crack growth model for Glare in combination with a linear damage accumulation law.  相似文献   

17.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

18.
The crack growth behaviour of hybrid boron/glass/aluminium fibre metal laminates (FMLs) under constant‐amplitude fatigue loading was investigated. The hybrid FMLs consist of Al 2024‐T3 alloy as the metal layers and a mixture of boron fibres and glass fibres as the fibre layers. Two types of boron/glass/aluminium laminates were fabricated and tested. In the first type, the glass fibre/prepreg and the boron fibre/prepreg were used separately in the fibre layers, and in the second type, the boron fibres and the glass fibres were uniformly mingled together to form a hybrid boron fibre/glass fibre prepreg. An analytical model was also proposed to predict the fatigue crack growth behaviour of hybrid boron/glass/aluminium FMLs. The effective stress intensity factor at a crack tip was formulated as a function of the remote stress intensity factor, crack opening stress intensity factor, and the bridging stress intensity factor. The bridging stress acting on the delamination boundary along the crack length was also calculated based on the crack opening relations. Then, the empirical Paris‐type fatigue crack growth law was used for predicting the crack growth rates. A good correlation between the predicted and experimental crack growth rates has been obtained.  相似文献   

19.
The fatigue crack growth behaviour of hybrid S2‐glass reinforced aluminium laminates (Glare) with multiple open holes was investigated experimentally and analytically. It was observed that the presence of multiple‐site fatigue damage would increase crack growth rates in the metal layers as two propagating cracks converged. An analytical crack growth model was established for predicting crack growth rates based on empirical Paris equation. The effective stress intensity factor at crack tips is a function of mode I far‐field stress intensity factor, crack opening stress intensity factor and effective non‐dimensional stress intensity factor that incorporated the crack‐bridging effect in fibre metal laminates. The predicted results under different applied stress can capture the trend of averaged crack growth rates in experiments, although deviation exists in the predictions.  相似文献   

20.
Stable matrix crack growth behaviour under mechanical fatigue loading has been studied in a quasi-isotropic (0/90/-45/+45)s GFRP laminate. Detailed experimental observations were made on the accumulation of cracks and on the growth of individual cracks in +45° as well as 90° plies. A generalised plain strain finite element model of the damaged laminate has been constructed. This model has been used to relate the energy release rate of growing cracks to the crack growth rate via a Paris relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号