首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Very small nanoparticles (size 3-5 nm) of Y2Sn2O7, Y2Sn2O7:Tb3+ and Sb3+ co-doped Y2Sn2O7:Tb3+ were prepared at a relatively low temperature of 700 °C. Y2Sn2O7 host is characterised by an emission around 436 nm, which is arising from the oxygen vacancies present in the lattice. Tb3+ emission improves significantly when Sb3+ ions are co-doped with Y2Sn2O7:Tb3+ nanoparticles. Incorporation of Sb3+ ions at the Y3+ site of Y2Sn2O7 lattice and associated lattice distortion around Tb3+/Y3+ ions brought about by the difference in the stable coordination number of Sb3+ and Y3+ ions are responsible for the improved Tb3+ emission from the co-doped samples.  相似文献   

2.
Mn2P2O7 polyhedral particles were synthesized by simple and cost-effective method using manganese nitrate hydrate and phosphoric acid in the presence of nitric acid with further calcinations at the temperature of 800 °C. The crystallite size obtained from X-ray line broadening is 31 ± 13 nm for the Mn2P2O7. The X-ray diffraction and SEM results indicated that the synthesized nanoparticles have only the structure without the presence of any other phase impurities. The FT-IR and FT-Raman spectra show characteristic bands of the P2O74− anion. The UV–Vis–NIR spectrum confirms the octahedral coordination of Mn2+ ion.  相似文献   

3.
L. Wang 《Thin solid films》2010,518(17):4817-4820
Y2O3:Eu3+ red-emitting thin film phosphor was prepared by a two-step process: the cathodical deposition of thin film of yttrium hydroxide and europium hydroxide followed by an annealing process to achieve Eu3+ doped Y2O3 film. It is found that the atomic content of Eu3+ can be well controlled by simply adjusting the volume ratio of Y(NO3)3 to Eu(NO3)3 solutions. Dependence of the photoluminescence intensity on the atomic content of Eu3+ in Y2O3 was also studied. The best photoluminescence performance of Y2O3:Eu3+ thin film phosphor was achieved as atomic content of Eu3+ equal to 1.85 at.%.  相似文献   

4.
Lanthanide-doped uniform pure cubic phase Y2O3 hollow microspheres have been successfully synthesized via a facile, high yield urea-based coprecipitation route with assistant of carbon spheres templates. The diameter and shell thickness of the microspheres can be manipulated by adjusting carbon sphere templates. Under a 980 nm excitation, Yb3+/Er3+, Er3+, Yb3+/Tm3+-doped Y2O3 hollow microspheres emit bright upconversion red, green, blue light with high purity, respectively, while Eu3+, Eu3+/Tb3+-doped Y2O3 hollow microspheres exhibit intense downconversion red light under the excitation of 254 nm ultraviolet light. Especially, the 610 nm emission intensity of Eu3+ in the Eu3+/Tb3+-codoped Y2O3 hollow microspheres is almost 5 times of that in the Y2O3:Eu3+ hollow microspheres indicating the occurring of the energy transfer from Tb3+ to Eu3+ ions.  相似文献   

5.
In this work, two Tb3+ activated green phosphors: Y2O3:Tb3+ and YBO3:Tb3+ were prepared by hydrothermal method. Photoluminescence properties of both phosphors were studied in details. Both phosphors exhibit similar luminescent characteristics symbolized by the dominant green emission at 545 nm. Concentration quenching occurs at the Tb3+ concentration of 1.60 atomic% and 2.57 atomic% for Y2O3:Tb3+ and YBO3:Tb3+, respectively. Luminescence decay properties were characterized to better understand the mechanism of concentration quenching. Based on the calculation, the concentration quenching in both phosphors was caused by the dipole–dipole interaction between Tb3+ ions.  相似文献   

6.
Eu2+ and Mn2+ co-doped SrSi2O2N2 green-phosphors, with promising luminescent properties (examined by their powder diffuse reflection, photoluminescence excitation and emission spectra) suitable for UV converted white LEDs, were produced by high temperature solid-state reaction method. The produced materials exhibited intense broad absorption bands at 220–500 nm and a broad emission band centered at ca. 530 nm, attributed to 4f–5d transitions of Eu2+. The emission intensity of Eu2+ ions was greatly enhanced by introducing Mn2+ ions into SrSi2O2N2:Eu2+ due to the energy transfer from Mn2+ to Eu2+. The energy transfer probability from Mn2+ to Eu2+ depends strongly on the Mn2+ concentration, which is maximized at a Mn2+ concentration of 3 mol%. It drastically decreases for higher concentrations. The results indicated that SrSi2O2N2:Eu2+, Mn2+ is a promising green-emitting phosphor for white-light emitting diodes with near-UV LED chips.  相似文献   

7.
Y6Si3O9N4:Ce3+ phosphor was prepared by a solid-state reaction in reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of Y6Si3O9N4:Ce3+. Scanning electron microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 5 μm. Photoluminescence (PL) measurements showed that the phosphor can be efficiently excited by near ultraviolet (UV) or blue light excitation, and exhibited bright green emission peaked at about 525 nm. Compared with Ce3+-doped Y4Si2O7N2 phosphors, Ce3+-doped Y6Si3O9N4 phosphors showed longer wavelengths of both excitation and emission. The Y6Si3O9N4:Ce3+ is a potential green-emitting phosphor for white LEDs.  相似文献   

8.
In this work, Y2O3 was evaluated as a gate insulator for thin film transistors fabricated using an amorphous InGaZnO4 (a-IGZO) active layer. The properties of Y2O3 were examined as a function of various processing parameters including plasma power, chamber gas conditions, and working pressure. The leakage current density for the Y2O3 film prepared under the optimum conditions was observed to be ~ 3.5 × 10− 9 A/cm2 at an electric field of 1 MV/cm. The RMS roughness of the Y2O3 film was improved from 1.6 nm to 0.8 nm by employing an ALD (Atomic Layer Deposition) HfO2 underlayer. Using the optimized Y2O3 deposition conditions, thin film transistors (TFTs) were fabricated on a glass substrate. The important TFT device parameters of the on/off current ratio, sub-threshold swing, threshold voltage, and electric field mobility were measured to be 7.0 × 107, 0.18 V/dec, 1.1 V, and 3.3 cm2/Vs, respectively. The stacked insulator consisting of Y2O3/HfO2 was highly effective in enhancing the device properties.  相似文献   

9.
Studies of the crystal chemistry of nonsuperconducting PrBa2Cu3O7 indicate that this compound is strictly isostructural with its superconducting RBa2Cu3O7 (R = Y, rare earth) analogs. Crystallographically, Pr is present in the trivalent state according to the structural trends exhibited by the RBa2Cu3O7 series as a function of R3+ ionic radius. The sole structural anomaly attributable to the presence of Pr3+ in the YBa2Cu3O7 structure is a next-next-nearest neighbor effect and consists of an unusually short axial Cu-O distance, i.e., a short bond length between the in-plane copper and the chain oxygen. The correlation of this anomaly with the nonmetallic/nonsuperconducting properties of PrBa2Cu3O7 supports a variety of literature reports, both theoretical and experimental, suggesting that the apical oxygen in the YBa2Cu3O7 structure plays a critical role in mediating the appearance of superconductivity. The mechanism by which the f-electrons in Pr3+ (f 2) interact with the Cu-O manifold to produce the nonmetallic behavior of PrBa2Cu3O7 remains unknown; however, superconductivity is turned back on for Nd3+ (f 3), immediately next to Pr and just slightly smaller. Careful comparative studies of superconducting NdBa2Cu3O7 and nonmetallic PrBa2Cu3O7 are needed to elucidate the critical difference in the behavior of the f-electrons and may shed light on the fundamental mechanism of high-temperature superconductivity in copper oxides.  相似文献   

10.
Luminescence properties of Y2−xGdxO3:Eu3+ (x = 0 to 2.0) thin films are investigated by site-selective laser excitation spectroscopy. The films were grown by pulsed laser deposition method on SiO2 (100) substrates. Cubic phase Y2O3 and Gd2O3 and monoclinic phase Gd2O3 are identified in the excitation spectrum of the 7F0 → 5D0 transition of Eu3+. The emission spectra of the 5D0 → 7FJ (J = 1 and 2) transition from individual Eu3+ centers were obtained by tuning the laser to resonance with each excitation line. The excitation line at around 580.60 nm corresponds to the line from Eu3+ with C2 site symmetry of cubic phase. New lines at 578.65 and 582.02 nm for the CS sites of Gd2O3 with monoclinic phase are observed by the incorporation of Gd in Y2O3 lattice. Energy transfer occurs between Eu3+ ions at the CS sites and from Eu3+ ions at the CS sites to those at the C2 site in Y2−xGdxO3.  相似文献   

11.
The correlation of crystal structure and microwave dielectric properties for Zn(Ti1−xSnx)Nb2O8 ceramics were investigated. The Zn(Ti1−xSnx)Nb2O8 ceramics contained ZnTiNb2O8 and an unknown Columbite-type phase. The columbite structure phase with increasing degree of ordering led to decrease of dielectric constant, increase of Qf and τf. The ZnTiNb2O8 with decreasing cation valence led to increase of τf. The typical values were: ? = 30.88, Qf = 43,500 GHz, τf = −54.32 × 10−6/ °C.  相似文献   

12.
In this work, Y2O3:Eu3+ thin film phosphors were prepared by electro-deposition method. The effect of Na+ and K+ ions on the photoluminescence properties of Y2O3:Eu3+ thin film phosphor was studied in details. It was found that the addition of Na+ and K+ ions could improve the photoluminescence intensity by 3 to 4 times. The highly improved photoluminescence intensity may be caused by different factors. The improved crystallinity and the increased optical volume caused by the flux effect of Na+ and K+ ions could be the major reasons for the enhanced photoluminescence intensity. It was also found that the average lifetime of Y2O3:Eu3+ thin film phosphors could be adjusted by the molar amount of Na+ and K+ ions.  相似文献   

13.
In order to search efficient red-emitting phosphors for white LEDs application, CaAl12O19:Mn4+ phosphors have been prepared by a combustion method assisted with GeO2 flux. The influence of GeO2 concentration and annealing temperature on the structure and luminescence intensity for the phosphors has been investigated. The mechanism for luminescence enhancement has been discussed. At GeO2 doping concentration of 1.5 mol%, the red emission intensity increases by 81% under 330 nm UVA excitation. More isolated luminescence center Mn4+ ions rather than pairs of Mn4+-Mn2+ ions are formed in the lattice with the introduction of GeO2 at high temperature oxidation, leading to the enhancement of the red emission. A feasible new way to enhance the red emission in CaAl12O19:Mn4+ phosphor is obtained.  相似文献   

14.
We have fabricated and measured a high-capacity superconducting current lead composed of a Y1Ba2Cu3O7–x cylinder, 20 cm long and 0.9 cm2 cross section. A steady-state, d.c., critical current of 225 A at a temperature of 77 K was measured in this sample, using a voltage criterion of 2×10–7 V/cm (p = 8×10–10 ohm-cm). This current was limited by the currentinduced, self magnetic field. To our knowledge this is the largest d.c. critical current so far reported in a Y1Ba2Cu3O7–x sample and demonstrates the possibility of using hightemperature superconducting HTS materials for current leads to low-temperature superconducting LTS magnets or in power distribution systems.  相似文献   

15.
Er3+-doped Y2Ti2O7 and Er2Ti2O7 thin films were fabricated by sol-gel spin-coating method. A well-defined pyrochlore phase ErxY2-xTi2O7 was observed while the annealing temperature exceeded 800 °C. The average transmittance of the ErxY2-xTi2O7 thin films annealed at 400 to 900 °C reduces from ∼ 87 to ∼ 77%. The refractive indices and optical band gaps of ErxY2-xTi2O7 (x = 0-2) annealed at 800 °C/1 h vary from 2.20 to 2.09 and 4.11 to 4.07 eV, respectively. The ∼ 1.53 μm photoluminescence spectrum of Er3+ (5 mol%)-doped Y2Ti2O7 thin films annealed at 700 °C/1 h exhibits the maximum intensity and full-width at half maximum (∼ 60 nm).  相似文献   

16.
Y2O3:Er3+,Yb3+ nanoparticles were synthesized using Pechini type sol-gel method and then characterized by XRD, TEM, SEM, Raman spectroscopy, and fluorescence spectrophotometer. Local temperature effect on upconversion luminescence intensities was theoretically analyzed and experimentally tested. These results indicate that a competition process between local temperature at luminescent spot and laser pump power density decides the development trend of upconversion luminescence intensity. Therefore, it can be concluded that the most intensive upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles can be achieved at a certain pump power density, which should be slightly below a given constant value (the corresponding threshold of temperature).  相似文献   

17.
Sr4Si3O8Cl4:Eu2+ and Sr3.5Mg0.5Si3O8Cl4:Eu2+ phosphors were prepared by a conventional solid state reaction (SS). Excited by 370 nm near-ultraviolet light, the phosphors show an efficient bluish-green wide-band emission centering at 484 nm, which originates from the 4f5d1 → 4f7 transition of Eu2+ ion. The excitation spectra of the phosphors are a broad band extending from 250 nm to 400 nm. Mg2+-codoping greatly enhances the bluish-green emission of the phosphors. An LED was fabricated by coating the Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ phosphor onto an ~ 370 nm-emitting InGaN chip. The LED exhibits bright bluish-green emission under a forward bias of 20 mA. The results indicate that Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ is a candidate as a bluish-green component for fabrication of NUV-based white LEDs.  相似文献   

18.
Cerium-doped Lu4Si2O7N2 green phosphors were synthesized by a high-temperature solid-state reaction method under nitrogen atmosphere. Compared with Ce-doped Y4Si2O7N2 phosphors, Ce-doped Lu4Si2O7N2 phosphors showed longer wavelengths of both excitation and emission, lower Stokes shift, and much stronger emission intensity. Based on the first-principles calculations of the two phosphors, the strong emission intensity originates from the large density of states. At last, the effects of Ce3+ concentration on photoluminescence were also examined.  相似文献   

19.
In this work the photoluminescence and excitation spectra at room temperature of the spinel-type MgGa2O4 with 0.5% and 10.0% of Mn2+ have been studied. The polycrystalline samples were synthesized by standard solid-state reaction methods at high temperature. The photoluminescence spectra exhibit green and red emissions for both samples, attributed to 4T1(4G 6A1(6S) transition of Mn2+ ion in tetrahedral and octahedral sites of oxygen, respectively. The excitation spectra exhibit features unambiguously assigned to d–d transitions of Mn2+ in those kinds of sites. From the excitation spectra and Tanabe–Sugano matrices the crystal field Dq and Racah B parameters were obtained.  相似文献   

20.
A novel method for preparing Al2O3/ZrO2 (Y2O3) eutectic was developed by combining combustion synthesis with melt-casting under ultra-high gravity (CSMC-UHG). The application of UHG = 800 g resulted in a high relative density of 99.8%, and an orientation-growth along the UHG direction. The microstructure was composed of aligned growth regimes containing a triangular dispersion of orderly ZrO2 rods in Al2O3 matrix with a spacing of 300 nm. The eutectic had a high fracture toughness up to 17.9 MPa·m1/2, which was mainly attributed to the nanostructure and the elastic bridge effects of the aligned ZrO2 rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号