首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the trellis-coded code-division multiple-access (TC-CDMA) system based on a multisequence signaling, called orthogonal plane sequence modulation (OPSM), in correlated Rayleigh fading channels and derive its pairwise error probability with different degrees of channel state information. Numerical results show that the OPSM-based TC-CDMA system outperforms conventional convolutionally coded CDMA or TC-CDMA systems.  相似文献   

2.
The conventional maximum a posteriori receiver for coded code-division multiple-access (CDMA) systems has exponential computational complexity in terms of the number of users and the memory of the channel code. In this letter, we propose a low-complexity soft-input soft-output (SISO) multiuser detector based on the reduced-state a posteriori probability algorithm. Per-survivor processing and soft interference cancellation are used to remove the residual past and future interference in the branch metric computation. The complexity of the proposed receiver is related to the reduced memory of the CDMA channel and can be adjusted according to the complexity/performance tradeoff. Simulation results show that for asynchronous convolutionally coded systems, the proposed receiver can achieve the near-single-user performance for moderate to high signal-to-noise ratios.  相似文献   

3.
The capacity of a code-division multiple-access (CDMA) system is a function of the bit error rate (BER) performance of individual users. Therefore, it is important to optimize the individual links before proceeding to system level analysis. This is particularly true for operating in a fading channel where the performance without diversity reception is rather poor. This paper compares the BER performance of differential detection and pilot symbol-assisted coherent detection of a direct-sequence (DS) spread-spectrum (SS) signal on a frequency-selective Rayleigh fading channel using RAKE reception. Both equal gain and maximal ratio combining are considered, and the effect of convolutional coding with interleaving is studied. It is shown that in the particular cases considered in this paper, rate 1/8 convolutionally encoded pilot symbol-assisted BPSK performs better than coded differential detection, thus providing a higher system capacity  相似文献   

4.
The analysis of an adaptive rate convolutionally coded multicarrier direct sequence code division multiple-access (DS/CDMA) system is considered. In order to accommodate a number of coding rates easily and make the encoder and decoder structure simple, we use the rate-compatible punctured convolutional (RCPC) code. We obtain data throughputs at several coding rates, and choose the coding rate that has the highest data throughput in the signal-to-interference and noise ratio (SINR) sense. To achieve maximum data throughput, a rate adaptive system is proposed based on the channel state information (the SINR estimate). The SINR estimate is obtained by the soft decision Viterbi decoding metric. We show that the proposed rate adaptive convolutionally coded multicarrier DS/CDMA system can enhance the spectral efficiency and provide frequency diversity  相似文献   

5.
We propose the random Manchester codes (RMC) to improve the bit error probability (BEP) performance in both synchronous and asynchronous fiber-optic code-division multiple-access (CDMA) systems. The spreading sequences used in the synchronous and asynchronous systems are modified prime sequence codes and optical orthogonal codes (OOCs), respectively. Thermal noise, shot noise, and avalanche photodiode (APD) bulk and surface leakage currents are taken into consideration in the BEP analyzes. The results show that the proposed systems can support a larger number of simultaneous users than other systems with similar system complexity under the same bit-error probability constraint  相似文献   

6.
In this paper, we propose a novel low-complexity receiver, namely, a hybrid receiver (HR) for the downlink of a multicell code-division multiple-access (CDMA) system with a transmit delay diversity transmission scheme. The proposed receiver is designed by combining the merits of the decorrelating receiver (DR) and the conventional receiver (CR). Unlike most multiuser receivers, HR operates with the same information as CR. For a target performance metric (e.g., bit error probability (BEP)=10-2), the reduced-complexity HR significantly outperforms CR, DR, and minimum mean-square error (MMSE) receiver with estimated channel information. We also compare the performance of the reduced-complexity HR with a reduced-complexity MMSE receiver, which slightly outperforms the former at a price of higher complexity  相似文献   

7.
This paper presents an analytical evaluation of a direct-sequence/frequency-hopped code-division multiple-access (DS/FH-CDMA) system in a Rayleigh fading environment. The modulations under consideration are noncoherent M-ary-frequency-shift keying (MFSK) and an MFSK-based joint-frequency phase modulation utilizing differential binary phase-shift keying (PSK). Multiple-access interference has been taken into account, and the spectral efficiency for uncoded as well as convolutionally coded systems has been calculated  相似文献   

8.
A technique that can suppress multiple-access interference (MAI) in space-time block-coded (STBC) multiple-input-multiple-output (MIMO) code-division multiple-access (CDMA) systems is developed. The proposed scheme, called a constrained minimum mean square error (CMMSE) receiver, is an extension of the CMMSE receiver for a single-input-single-output system to MIMO systems. It is shown that the complexity of the proposed CMMSE receiver is almost independent of the number of transmitter antennas. The advantage of the proposed receiver over the existing receivers for STBC CDMA systems is demonstrated by comparing the closed-form expressions of the signal-to-interference plus noise ratio and simulated bit error rates. The results indicate that the proposed CMMSE receiver can provide a significant performance improvement over the conventional receivers and that the gain achieved by suppressing the MAI can be larger than that from increasing the transmitter or receiver diversity.  相似文献   

9.
This correspondence analyzes the bit-error rate (BER) performance of coded synchronous code-division multiple-access (CDMA) systems assuming perfect channel state information (CSI) and optimal joint multiuser detection/decoding (OJMUDD). Our analysis is conducted in the same framework as that of uncoded systems. First, we derive the precise probability of an error event, then we provide an upper bound on the BER based on the sum of pairwise error probabilities, and, finally, we tighten the upper bound by considering decomposable error events. Many new concepts unique to coded systems are introduced. We propose to use quasi parity checks for identifying permissible error events, introduce the concept of compatible probability of error matrices, extend the list of conditions for identifying decomposable error events, and introduce the concept of conjugate sets to explore the symmetry among indecomposable error events. Simulation results are given along with theoretical predictions.  相似文献   

10.
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached  相似文献   

11.
A multiple-user interference reduction technique is proposed for optical code-division multiple-access (CDMA) systems. Data symbols from each user are encoded using a pulse-position modulation (PPM) scheme before multiplexing. Modified prime sequences are adopted as the signature codes in the multiplexing process. An interesting property of this code is the uniformity of the cross correlation among its sequences. This property is the main key in constructing the multiple-access interference canceler. In addition to its simplicity, this canceler offers a great improvement in the error probability as compared to the system without cancellation. A simple modification to this canceler that enhances its performance is proposed as well  相似文献   

12.
We propose using a soft-input decoder for the decoding of internally convolutional coded Poisson noise-dominated fiber-optic code-division multiple-access (CDMA) communication systems using optical orthogonal codes. We first compute the coded symbol log-likelihoods at the output of the Poisson noise-dominated channel, which is then used by a soft-input maximum-likelihood decoder, for a fiber-optic CDMA system assuming both on-off keying and binary pulse position modulation schemes. Furthermore, we develop a discrete soft-output channel model for a Poisson noise-dominated channel, with which we evaluate the upper bound on the bit error probability of the internally coded Poisson noise-dominated fiber-optic CDMA system using a soft-input decoder. It is shown that the soft-input decoder significantly outperforms the hard-input decoder. Furthermore, the performance of the soft-input decoder is also evaluated in the presence of different values of dark current.  相似文献   

13.
The performance of a multiple-input–multiple-output (MIMO) code-division multiple-access (CDMA) system, using space–time spreading (STS), is analyzed over a frequency-flat Nakagami- $m$ fading channel. The convolutionally space–time coded system employs a decorrelator detector with $N = 2$ and $L$ antennas at the user side and base station (BS), respectively. Assuming independent Nakagami fading channels between transmit and receive antennas, we determine the probability density function (pdf) of the signal-to-interference-plus-noise ratio (SINR) at the output of the multiuser detector and after signal combining. Considering binary phase-shift keying (BPSK) transmission, we then evaluate the pairwise error probability and the corresponding bit-error-rate (BER) upper bounds over fast-fading channels. The derived error bounds, when compared to system simulations, are shown to be accurate at all signal-to-noise ratios (SNRs) of interest. Examining the asymptotic performance of the underlying space–time multiuser system, at high SNRs, we evaluate the overall diversity gain as a function of the number of transmit and receive antennas and the minimum free distance of the convolutional code.   相似文献   

14.
The optimal decoding scheme for a code-division multiple-access (CDMA) system that employs convolutional codes results in a prohibitive computational complexity. To reduce the computational complexity, an iterative receiver structure was proposed for decoding multiuser data in a convolutional coded CDMA system. At each iteration, extrinsic information is exchanged between a soft-input/soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders. However, a direct implementation of the full-complexity SISO multiuser detector also has the exponential computational complexity in terms of the number of users. This paper proposes a low-complexity SISO multiuser detector based on tentative hard decisions that are made and fed back from the channel decoders in the previous iteration. The computational complexity of the proposed detector is linear in terms of the number of users and can be adjusted according to the complexity/performance tradeoff. Simulation results show that even with this simple feedback scheme, the performance of the coded multiuser system approaches that of the single-user system for moderate to high signal-to-noise ratios (SNRs)  相似文献   

15.
Coherent spread-spectrum communications with transmitted reference-based, also called pilot-based, channel estimation is considered for code-division multiple-access (CDMA) communications over fading channels. Both noncontiguous time-division multiplexed reference symbol-based and continuous code-division multiplexed channel-based schemes are described. Assuming mean square error or optimal robust channel estimation, we derive the optimal receiver structure with a maximum-likelihood convolutional decoder. In addition, the Bhattacharyya bound and the cutoff rate of the reference-assisted coherent communications are derived. These analytical results are used for evaluating system performance and for selecting parameters such as coding rate and the data to reference power ratio to optimize system performance. Simulation results are given showing that the reverse link performance in a CDMA system can be significantly improved by using the reference-assisted coherent communication instead of noncoherent reception of orthogonally coded signal  相似文献   

16.
A fiber Bragg grating (FBG) encoder/decoder scheme based on correlation subtractions of nearly orthogonal M-sequence codes is presented. With proper coder design, a receiver can reject interfering users and obtain quasi-orthogonality between optical code-division multiple-access (CDMA) users in the network. However, optical CDMA networks may be degraded by multiple-access interference (MAI) due to nonflattened incoherent sources and nonideal FBG coders. A compensating module is therefore proposed to compensate for such MAI effects. As a result, the MAI effects induced by nonideal FBG coders can be perfectly eliminated by the compensating module. With spectral width reduction on the incoherent source, the scheme can partly compensate the MAI effects induced by nonflattened sources and further reduce the average error probability in the system performance.  相似文献   

17.
Spatial diversity is an attractive technology to cope with the fading channel encountered in mobile communications. This paper presents novel closed analytical expressions of the bit-error rate (BER) achievable in a coherent binary phase-shift-keying (CBPSK) direct-sequence code-division multiple-access (DS/CDMA) system for any power delay profile and for either postdetection selection or maximal ratio combining (MRC). In particular, expressions for the cutoff rate R o and for its related parameter D are also formulated in order to assess the system performance under the consideration of some channel coding schemes. Finally, an exemplary study is carried out in order to illustrate the behavior of a realistic space-diversity code-division multiple-access (CDMA) system according to the analytical expressions that have been derived  相似文献   

18.
An asynchronous multicarrier (MC) direct-sequence (DS) code-division multiple-access (CDMA) scheme for the uplink of the mobile communication system operating in a frequency selective fading channel is analyzed. The bit error rate performance of the system with either equal gain combining or maximum-ratio combining is obtained. Numerical results indicate that the system performs better than that of the conventional DS-CDMA system and another MC-DS-CDMA system  相似文献   

19.
An iterative multi-user detector for code-division multiple-access (CDMA) signals that is able to operate under highly loaded conditions with a non-binary modulation scheme is presented. The results presented demonstrate that the receiver is able to achieve near single-user bit error rate performance  相似文献   

20.
Weighted interference cancellation is proposed to improve the post-decoding interference cancellation detector in a convolutionally coded CDMA system. A weight determination method is presented in which the estimated information bit error probability from the soft-output Viterbi algorithm is used. Simulation results show that the proposed scheme outperforms the previous post-decoding interference cancellation detector  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号