首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been well known that the ductile-brittle transition temperature (DBTT) of each weld structure or its shift (ΔDBTT) from parent material is one of the very useful measures of the fracture characteristics in steel weldment. In order to present an applicability of small punch (SP) test technique to weldments, in this study, a fracture strength of microstructure at any localized region of interest on HAZ, weld metal and parent material in two steels was evaluated by using DBTT or ΔDBTT obtained from the SP test in relation to the data obtained from the COD test. The empirical correlation, (ΔDBTT) SP ⋟0.55 (ΔDBTT) COD , was obtained from the SP and COD test. In addition, the effects of test materials, that is the microstructures of welded region and the orientations of specimens etc, did not appear at the empirical correlation.  相似文献   

2.
Conventional test methods for measuring fracture toughness require the removal of large material samples from in-service component. However, recent developments of small punch test technique using miniature specimens have proved its usefulness and accuracy to evaluate the mechanical properties of components. Correlations have been obtained between mechanical characteristics determined from small punch test and uniaxial tensile test. Furthermore, the study showed that an appropriate empirical based-approach could be used to evaluate the Charpy-FATT of as-received and ex-service materials from small punch test.  相似文献   

3.
张莉  徐宏  郭良辉  侯峰 《机械强度》2007,29(3):468-472
开展采用小冲杆微试样试验技术评定材料断裂性能的研究.针对2.25Cr-1Mo钢(脆化态和脱脆态)及1.25Cr-0.5Mo钢,将小冲杆试验测试结果与常规冲击韧度及断裂韧度试验结果相关联,得到小冲杆试样变形过程中消耗的总变形能与常规夏比冲击功间的对应关系经验公式,以及小冲杆试样等效断裂应变与材料延性断裂韧度间的关联式,说明可以直接采用小冲杆试验结果估算材料的冲击及断裂韧度值,为无法取标准试样进行材料抗断裂性能测试场合提供了一种可行的间接测试技术.  相似文献   

4.
Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to — 162°C. The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to — 162°C.  相似文献   

5.
Welding of zinc-coated steel sheets for the automotive industry has been investigated experimentally and theoretically, using a continuous wave 2 kW CO2 laser. The specimens of 0.8, 1.0 and 1.2 mm thickness were welded as butt joint and lap joint. Argon gas was shielded co-axially to reduce the plasma and to protect the molten, pool from atmosphere. The mechanical tests of specimens were carried out to investigate the ductility of welds in butt joint and lap joint, using the Erichsen test, ball punch test and tensile shear test. The value of transverse weld pattern is higher than others. The fatigue life of longitudinal weld is superior, but that of circular weld pattern is inferior due to the high tensile residual stresses in the weld. The maximum Erichsen value was obtained as 96% and the deformability of zinc coated steel butt-welded was found to be 80% in the ball punch test. The high pressure formed by vaporization of zinc with the low boiling temperature during laser lap-joint welding splattered the molten pool and created porosities in the weld. The optimum gap was calculated to be 0.1 mm in the lap joint welding of zinc-coated steel sheet which was a good agreement with the experimental result.  相似文献   

6.
Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch (SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.  相似文献   

7.
小冲杆试验评价材料的断裂韧度   总被引:2,自引:0,他引:2  
关凯书  李璞  黄奕昶  王志文 《压力容器》2007,24(12):8-11,21
为了评价材料断裂韧度,通过小冲杆试验对2.25Cr1Mo的回火脆态、脱脆态、焊缝区以及1.25Cr0.5Mo钢进行了试验研究,并对所得的小冲杆试验数据进行了分析。结果表明小冲杆等效断裂应变εe与小冲杆能量Esp之间存在重要的线性关系;同时发现断裂点的小冲杆能量值与材料的断裂韧度值线性相关。该方法为无法获取标准试样进行材料抗断裂性能评价场合提供了一种可行的测试技术。  相似文献   

8.
厚钢板焊缝强度匹配对韧度影响的试验方法   总被引:1,自引:0,他引:1  
提出了研究厚钢板焊缝强度匹配对韧度影响的试验方法:用“直接测量法”确定焊缝强度匹配系数;用裂纹尖端张开位移(CTOD)断裂韧度作为焊缝材料韧度的指标。用“直接测量法”确定了低合金高强钢S355ML钢板(厚65mm)自动埋弧焊和手工电孤焊的焊缝强度匹配系数,同时将这两项焊接工艺的对接焊缝制成全厚度断裂韧度试样,运用裂纹尖端张开位移试验方法测定其焊缝中心的断裂韧度。结果表明,厚钢板焊态对接焊缝,低匹配焊缝具有较高的韧度,高匹配焊缝的韧度比较低。  相似文献   

9.
31Si2MnCrMoVE钢是为符合固体火箭发动机壳体设计需要而专门研制的超高强度钢。随着冶炼技术的进步,31Si2MnCrMoVE钢断裂韧度不断提高,构件采用的板厚也越来越薄。由于较高的断裂韧度和较小的板厚,给钢板表面裂纹断裂韧度测试带来困难,韧带尺寸偏小,难以满足有效性判据。这种情况下,不应该用线弹性断裂力学方法评价材料的断裂韧度,而应采用弹塑性断裂力学测试材料的延性断裂韧度JIC。基于以上原因,在条件断裂韧度不满足有效性判据的情况下,采用试验与有限元分析相结合的方法,通过试验测出裂纹启裂时的条件载荷,用有限元法计算出在条件载荷作用下的延性断裂韧度JIC,再用断裂力学理论转换成表面裂纹断裂韧度KIe。用JIC作为断裂参量,就必须分析J积分的有效性,因此讨论超高强度钢表面裂纹前缘的J守恒和J主导的有效性,从而为固体火箭发动机设计提供依据。  相似文献   

10.

In this paper, describe the fabrication of high strength punch molds that can be applied to ultra-high strength sheet materials after processing. A method for improving the strength of the punching die by additive manufacturing (AM) of a high strength powder material using a metal 3D printer was proposed. Furthermore, a semi-additive technique was proposed to increase the punch strength through partial AM of specific parts of the punch that require high strength. A preprocessing process for predicting the semi-additive shape for the punch function portion is proposed for application of the AM technology of a metal 3D printer to this semi-additive technique. The preprocessing for determining the semi-additive shape consists of the predicting step of the punch strength based on the shear process of the sheet material, analyzing step the stress distribution of the punch, defining step the semi-additive range, designing step the semi-additive shape, and verifying step the additive interface strength. Based on this simulation, the range of shapes for the semi-additive was 1.21 mm and 2.62 mm for sheet material CP1180 and 1.3 mm and 3.2 mm for sheet material 22MnB5. The shape and range determined in the simulation process defines a semi-additive area (volume) for the 3D printing AM technique using a high-strength powder material, and a semi-additive punch was manufactured according to the defined area. The semi-additive punch (HWS powder material) fabricated in this study was performed a durability test for validity verification in the piercing process of high-strength sheet material (CR980). This validation test compared the state of the punch after 1000 piercing processes with a typical cold piercing punch (SKD11 solid material). From this test, the feasibility of the semi-additive punch was confirmed by showing a similar state of scratches and abrasion from the two punches. The simulation analysis processor for the additive shape and the additive range prediction for the semi-additive punch manufacturing presented in this paper can be useful for the additive manufacture of cutting and trimming punch mold.

  相似文献   

11.
The contents of this paper include the evaluation of corrosion characteristics and the behaviour of stress corrosion cracking (SCC) for the weldment and post weld heat treatment (PWHT) specimen and parent of HT-60 steel using a slow strain rate test (SSRT) in synthetic seawater. Corrosion characteristics were obtained from the polarization curves by potentiostat, and SCC phenomena were evaluated through the parameters such as reduction of area and time to failure by comparing the experimental results in corrosive environment with those obtained in air. Corrosion rate of the weldment was the fastest, followed by parent and PWHT specimen. SCC phenomena between the weldment of HT-60 steel and synthetic seawater were shown. Besides, SCC was dependent upon the pulling speed greatly. Maximum severity of SCC was obtained at a speed of 10−6 mm/min, whereas SCC could not be seen almost at 10−4 mm/min. The resistance to SCC for PWHT specimen was improved considerably compared that of the weldment at 10−6 mm/min. In case of SCC failure, it was verified from SEM examination that brittle mode and lots of pits could be seen at the fractured region near the surface of the specimen.  相似文献   

12.
The purpose of this study is to evaluate the AE characteristics for the basemetal, PWHT (post-weld heat treatment) and weldment specimens of SA-516 steel during fracture testing. Four-point bending and AE tests were conducted simultaneously. AE signals were emitted in the process of plastic deformation. AE signal strength and amplitude of the weldment was the strongest, followed by PWHT specimen and basemetal. More AE signals were emitted from the weldment samples because of the oxides, and discontinuous mechanical properties. AE signal strength and amplitude for the basemetal or PWHT specimen decreased remarkably compared to the weldment because of lower strength. Pre-cracked specimens emitted even lower event counts than the corresponding blunt notched specimens. Dimple fracture from void coalescence mechanism is associated with low-level AE signal strength for the basemetal or PWHT. Tearing mode and dimple formation were shown on the fracture surfaces of the weldment, but only a small fraction produced detectable AE.  相似文献   

13.
A self-propagating high-temperature synthesis (SHS) welding-pen that can weld steel workpiece from 6 to 10 mm is developed and welds the Q235 steel. The structure and properties of the welding joint are studied. The result indicates that this type of welding is melting and the fusion zone is clear. The tensile-strength of the welding joint is 283 MPa, flexural strength is 628 MPa, impact toughness is 46.43 J·cm−2, and the microhardness of the welding joint and fusion zone are 230 HV0.1 and 255.6€HV0.1, respectively. The mircohardness of the fusion zone and the welding line are higher than that of the matrix.  相似文献   

14.
Al_2O_3/Ti(CN)复合刀具材料的制备及切削性能研究   总被引:3,自引:0,他引:3  
利用热压烧结工艺制备出Al2 O3 /Ti(CN)复合陶瓷刀具材料。测得该材料的平均抗弯强度为 82 0MPa ,平均断裂韧性为 7.4MPa·m1/ 2 ,维氏硬度为 2 0 .4GPa。通过与陶瓷刀具材料LT5 5、SG4的切削性能进行对比试验 ,发现其连续切削淬硬钢的性能高于SG4,但耐磨性能比LT5 5稍低 ,是一种适合连续切削铸铁与淬硬钢、尤其适合断续切削淬硬钢的刀具材料。  相似文献   

15.
In This study we investigate the dynamic fracture characteristics of a tungsten carbide cobalt (WC-6wt%Co) composite material. The dynamic fracture initiation toughness and some of the dynamic fracturing characteristics are evaluated by using the Instrumented Charpy Impact Testing (ICIT) procedure. The dependence of measured time-to-fracture on the tup impact velocity and the dynamic fracture toughness for the WC-6wt%Co composite material are obtained by using ICIT. The effect of the loading rate on fracture initiation toughness is found to be negligible when the time-to-fracture is on the order of 50μsec. At significantly higher rates of loading it is impossible to determine the apparent dynamic fracture initiation toughness because of the influence of the inertia force on fracture loading. It is found that the impact velocities affect the time-to-fracture significantly at lower impact velocities for various engineering materials. It is shown that with the decrease of tup impact velocities the time-to-fracture is increased and the dynamic fracture initiation toughness converges to static fracture toughness.  相似文献   

16.
This paper investigates the influence of the submerged arc welding (SAW) process parameters (welding current and welding speed) on the microstructure, hardness, and toughness of HSLA steel weld joints. Attempts have also been made to analyze the results on the basis of the heat input. The SAW process was used for the welding of 16 mm thick HSLA steel plates. The weld joints were prepared using comparatively high heat input (3.0 to 6.3 KJ/mm) by varying welding current (500–700 A) and welding speed (200–300 mm/min). Results showed that the increase in heat input coarsens the grain structure both in the weld metal and heat affected zone (HAZ). The hardness has been found to vary from the weld centre line to base metal and peak hardness was found in the HAZ. The hardness of the weld metal was largely uniform. The hardness reduced with the increase in welding current and reduction in welding speed (increasing heat input) while the toughness showed mixed trend. The increase in welding current from 500 A to 600 A at a given welding speed (200 mm/min or 300 mm/min) increased toughness and further increase in welding current up to 700 A lowered the toughness. Scanning electron microscopy of the fractured surfaces of impact test specimen was carried out to study the fracture modes. Electron probe micro analysis (EPMA) was carried out to investigate the variation in wt.% of different elements in the weld metal and HAZ.  相似文献   

17.
DC potential drop method for evaluating material degradation   总被引:1,自引:0,他引:1  
The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with in-service exposure time in high temperatures. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to evaluate the degradation. In this study, test materials with several different degradation levels were prepared by isothermal aging heat treatment at 630°C. The DC potential drop method and destructive methods such as tensile and fracture toughness were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. In this result, we can see that tensile strength and fracture toughness can be calculated from resistivity and it is possible to evaluate material degradation using DC potential drop method, non-destructive method.  相似文献   

18.
The incremental updated Lagrangian formulation of an elasto-plastic finite-element computer code has been incorporated into the extend rmin technique in order to handle the contact boundary condition as applied to the analysis of the axisymmetric tube-flaring process with a conical punch. A modified Cou-lomb’s friction law was also adopted to calculate the influence of friction coefficients on the tube-flaring process. Effects of the size and the mechanical properties of tubes, lubricants and the punch semi-angle on the flaring load were studied. It was found that good lubrication and tubular materials with a high strain hardening coefficient are both effective in reducing the flaring load. An optimum punch semi-angle (punch load is lower) in flaring is determined by work on frictional and bending at the punch inlet. In addition, the effect of spring-back on the tube diameter or angle of final deformation, under different friction coefficients after unloading, was also explored.  相似文献   

19.
The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel AISI-6F2 is a hot-working tool steel Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and fotged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel  相似文献   

20.
Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics: Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si3N4 matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa m1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号