首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
羟丙基魔芋淀粉合成工艺研究   总被引:1,自引:0,他引:1  
以魔芋淀粉和环氧丙烷为原料,以乙醇为溶剂,对羟丙基魔芋淀粉合成工艺进行了研究。考察了环氧丙烷用量、反应时间、反应温度、氢氧化钠用量、无水硫酸钠用量对羟丙基魔芋淀粉取代度和反应效率的影响。实验结果表明,环氧丙烷用量、反应时间、反应温度、氢氧化钠用量、无水硫酸钠用量对羟丙基魔芋淀粉取代度均有影响,以乙醇为溶剂制备羟丙基魔芋淀粉方法可行。采用分光光度法测定羟丙基魔芋淀粉取代度。  相似文献   

2.
羟丙基绿豆淀粉的制备及性能研究   总被引:2,自引:0,他引:2  
以绿豆淀粉为原料,环氧丙烷为醚化剂,氢氧化钠为催化剂,无水硫酸钠为膨胀抑制剂,对羟丙基绿豆淀粉合成工艺及性能进行了研究.考察了环氧丙烷用量、反应时间、反应温度、氢氧化钠用量、无水硫酸钠用量对羟丙基绿豆淀粉取代度的影响.实验结果表明,环氧丙烷用量、反应时间、反应温度、氢氧化钠用量、无水硫酸钠用量对羟丙基绿豆淀粉取代度均有影响.采用分光光度法测定羟丙基绿豆淀粉取代度.  相似文献   

3.
羟丙基糯玉米淀粉合成工艺及性能研究   总被引:3,自引:2,他引:3  
本文以糯玉米淀粉为原料,以环氧丙烷为醚化剂、氢氧化钠为催化剂、硫酸钠为抑制膨胀剂,对糯玉米羟丙基淀粉合成工艺及其性能进行了研究,探讨了糯玉米淀粉乳浓度、环氧丙烷用量、反应时间、反应温度、氢氧化钠用量及硫酸钠用量对糯玉米羟丙基淀粉取代度和反应效率的影响。实验结果表明,增加环氧丙烷用量、延长反应时间,可使羟丙基淀粉取代度增加。对糯玉米羟丙基淀粉的冻融稳定性、透明度及粘度进行研究表明,随着羟丙基糯玉米淀粉取代度的增加,其冻融稳定性和透明度增加,但粘度却降低。  相似文献   

4.
以葛根淀粉为原料,环氧丙烷为醚化剂,氢氧化钠为催化剂,无水硫酸钠为膨胀抑制剂,对羟丙基葛根淀粉的制备和性能进行了研究。考察了反应温度、反应时间、氢氧化钠用量、环氧丙烷用量以及无水硫酸钠用量对羟丙基葛根淀粉取代度的影响。采用分光光度法测定羟丙基葛根淀粉的取代度,用热重分析仪(TGA)、差示扫描量热仪(DSC)对其热特性进行了测试。制备羟丙基葛根淀粉的较佳工艺为:反应温度45℃,反应时间18 h,氢氧化钠用量1.2%,环氧丙烷用量10%,无水硫酸钠用量12%(氢氧化钠用量、环氧丙烷用量、无水硫酸钙用量均为占干淀粉质量分数)。葛根淀粉经羟丙基化后,透明度、冻融稳定性、抗酸碱性、膨胀能力增强,凝沉性减弱,且其分解温度及糊化温度均下降,扩大了其应用范围。  相似文献   

5.
本文以马铃薯淀粉为原料,以盐酸为酸解剖,环氧丙烷为醚化剂,无水硫酸钠为膨胀抑制剂,氢氧化钠为催化剂,对酸解羟丙基复合变性淀粉的制备和性能进行了研究。考察了环氧丙烷用量、无水硫酸钠用量、氢氧化钠用量、反应温度、反应时间对醚化反应的影响。采用流度计测定酸解淀粉的酸解度,分光光度计测定酸解羟丙基复合变性淀粉的取代度。试验结果表明,盐酸用量增大,酸解淀粉的黏度显著减小;增加环氧丙烷和氢氧化钠用量,升高反应温度和增加反应时间均有利于增大酸解羟丙基复合变性淀粉的取代度。  相似文献   

6.
羟丙基糯米淀粉的制备及其性质的研究   总被引:3,自引:0,他引:3  
以糯米淀粉为原料制备羟丙基淀粉,考察了环氧丙烷用量、反应时间、反应温度、淀粉乳浓度、氢氧化钠、硫酸钠对淀粉取代度和反应效率的影响,并对不同取代度的羟丙基淀粉的性质进行了研究。实验结果表明,以上各因素对羟丙基淀粉的取代度都有明显的影响,而且不同取代度的羟丙基淀粉的透明度和冻融稳定性及表观黏度比原淀粉都有提高,但白度变化不明显。  相似文献   

7.
以木薯淀粉为原料,环氧丙烷为醚化剂,硫酸钠为淀粉膨胀抑制剂,采用湿法工艺制备木薯羟丙基淀粉,以产品摩尔取代度(MS)为评价指标,通过单因素试验分别探讨了环氧丙烷用量、硫酸钠用量、反应pH值、反应温度、反应时间等对羟丙基醚化反应的影响,在此基础上应用正交试验确定了木薯羟丙基淀粉制备的最佳工艺条件。试验结果显示:(1)随环氧丙烷用量的增大,取代度逐渐升高,反应效率逐渐降低;(2)适当提高反应pH和反应温度有利于取代度的提高,但反应pH值超过11.5和反应温度超过45℃,会导致淀粉的局部糊化,不利于醚化反应的进程。制备木薯羟丙基淀粉的最佳工艺条件为:淀粉乳浓度40%,环氧丙烷添加量10%(对干基),硫酸钠添加量12%(对干基),反应pH值11.5,反应温度40℃,反应时间22 h。所得木薯羟丙基淀粉的取代度为0.143。  相似文献   

8.
以糯玉米淀粉为原料,环氧丙烷为醚化剂,在碱性条件下对羟丙基淀粉的制备工艺及其性质进行了研究.考察了醚化剂、膨胀抑制剂、pH、反应温度、反应时间对羟丙基淀粉取代度和反应效率的影响.实验结果表明,随着pH的增大,羟丙基淀粉的取代度和反应效率都增大;提高反应温度,羟丙基淀粉的取代度和反应效率都增加;增加环氧丙烷的用量,羟丙基淀粉的取代度随之增加,但反应效率呈下降的趋势;延长反应时间,淀粉的取代度和反应效率都呈上升趋势;增加硫酸钠的用量,羟丙基淀粉的取代度和反应效率都先增大,当硫酸钠用量超过12g时,随着硫酸钠用量的增加取代度和反应效率都降低.并且确定出最佳的反应条件:淀粉用量为100g时,pH为11.5,膨胀抑制剂12g,环氧丙烷10mL,反应温度50℃,反应时间20h.随着羟丙基糯玉米淀粉取代度的增加,其冻融稳定性、透明度、耐酸性、黏度热稳定性都增加.  相似文献   

9.
低取代度羟丙基木薯淀粉的制备   总被引:5,自引:0,他引:5  
羟丙基木薯淀粉为优良的食品用变性淀粉。本文研究用环氧丙烷制备羟丙基木薯淀粉的最佳反应条件,着重研究了淀粉乳浓度、环氧丙烷用量、反应温度和时间对醚化程度和反应效率的影响规律。结果表明:增高淀粉乳浓度能提高醚化程度和反应效率;增加环氧丙烷用量能加速醚化反应,提高取代度,但使反应效率降低;一定范围内升高反应温度,延长反应时间,醚化程度和反应效率随之增高。  相似文献   

10.
以糯玉米淀粉为原料,制备冻融稳定型羟丙基淀粉.并对淀粉乳浓度、环氧丙烷浓度、反应温度、反应时间、氢氧化钠浓度、硫酸钠浓度对羟丙基淀粉的冻融稳定性和分子取代度的影响进行了研究.确定制备冻融稳定型羟丙基淀粉的最佳工艺参数为:淀粉乳浓度40%,环氧丙烷浓度12%,反应温度50℃,反应时间25h,氢氧化钠浓度1.3%,硫酸钠浓度14%.同时对羟丙基糯玉米淀粉的透明度和抗老化特性进行了研究.随淀粉冻融稳定效果的增加,其淀粉的透明度和抗老化性均增加.  相似文献   

11.
小麦羟丙基淀粉的制备及其特性研究   总被引:1,自引:0,他引:1  
以小麦淀粉为原料,在碱性条件下,通过淀粉与环氧丙烷之间的醚化反应制得羟丙基淀粉。应用正交试验的方法.探讨了醚化剂、碱、膨胀抑制剂的用量及反应时间等四个因素对分子取代度(MS)的影响。结果表明:在30%环氧丙烷、1.5%氢氧化钠、15%硫酸钠、反应时间为16h条件下制备的羟丙基淀粉MS最高可达0.055。对羟丙基淀粉的透光率、凝沉性、抗盐性、抗酸性等特性指标进行了测定和研究。  相似文献   

12.
超声波作用对玉米淀粉羟丙基化的影响   总被引:2,自引:0,他引:2  
超声波技术是一种常用的物理加工处理方法,目前将超声波技术用于淀粉改性成为新型变性淀粉的研究热点。本文以玉米淀粉为原料,考察了超声功率、超声时间、淀粉浓度、环氧丙烷用量对其羟丙基化的影响。结果表明:在超声波的作用下,随着超声功率的增加、超声时间的增长、环氧丙烷用量的增加、淀粉浓度的增加,玉米淀粉羟丙基化的取代度呈现先增大后减小的趋势。通过正交实验获得了制备羟丙基玉米淀粉的最优工艺条件为:超声功率600W、超声时间20min、淀粉浓度35%、环氧丙烷用量4.8%,在该条件下于50℃反应4h制备的羟丙基玉米淀粉的取代度为0.4。  相似文献   

13.
以糯玉米淀粉为原料,环氧丙烷为醚化剂,在碱性条件下对羟丙基淀粉的制备工艺及其性质进行了研究。通过单因素实验考察了醚化剂、膨胀抑制剂、pH值、反应温度、反应时间对羟丙基淀粉取代度和反应效率的影响。实验结果表明,淀粉用量为100 g时,最佳反应条件为:pH11.5,硫酸钠12 g,环氧丙烷12 g,反应温度50℃,反应时间20 h。随着羟丙基糯玉米淀粉取代度的增加,其冻融稳定性、透明度、耐酸性和热稳定性都增强。  相似文献   

14.
采用微波法对玉米多孔淀粉原料进行处理,经过正交试验优化工艺,制备具有不同取代度的羟丙基玉米多孔淀粉。研究在微波作用下,淀粉乳质量分数、微波处理时间、微波功率以及环氧丙烷用量对产品取代度的影响。结果表明,用微波法制备羟丙基玉米多孔淀粉的最佳反应条件为微波功率300W、环氧丙烷用量(质量分数)6.90%、微波时间3min、淀粉乳质量分数30%,在该条件下制备的羟丙基多孔淀粉的摩尔取代度为0.0103。  相似文献   

15.
研究了用环氧丙烷制备马铃薯羟丙基淀粉的反应条件及羟丙基化对马铃薯淀粉糊特性的影响.在反应条件中,着重研究了 Na2SO4用量、环氧丙烷用量、反应温度和反应时间对分子取代度的影响规律.实验表明:羟丙基化能大大提高马铃薯淀粉糊的透明度、膨胀度和冻融稳定性,适度降低了糊化温度.  相似文献   

16.
Modified yam starch and dual-modified yam starch were produced with propylene oxide, sodium trimetaphosphate and sodium tripolyphosphate. Gelatinization temperature and final viscosity of native yam starch were 79.2 ± 0.4°C and 5702 ± 3 cP. Results showed that the molar substitution and degree of substitution were increased with the volume fraction of propylene oxide from 6–12%, the highest of molar substitution and degree of substitution were 0.0445 ± 0.0003 and 0.0065 ± 0.0006, the final viscosity and setback of dual-modified yam starch were also similar. However, the gelatinization parameters showed an inverse trend. Starch modified with a mixture of sodium trimetaphosphate and sodium tripolyphosphate had higher phosphorus content and increased viscosity compared to starch modified with sodium trimetaphosphate. The peak viscosity of starch modified with propylene oxide was higher than that of native yam starch and the highest was HP12. The granular surface of modified yam starch and dual-modified yam starch appeared significantly embossed and indented, while. Modified yam starch film treated with 12% propylene oxide showed a more homogeneous fractured surface. The tensile strength and elongation at break (E) of starch films were affected by crosslinking reagents and propylene oxide, respectively. The best transparence and E were demonstrated in starch film that was modified with 12% propylene oxide. However, the best tensile strength was demonstrated in starch film that was modified with 8% propylene oxide, sodium trimetaphosphate, and sodium tripolyphosphate. The final viscosity of HP6C1 and HP6C2 was 27 ± 7 and 45 ± 9 cP, which was too low to form film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号